

+°OV°T2-

NIVERS

University of Batna 2 Faculty of Mathematics and Computer Science Department of Computer Science

Oussama HARKATI

+800+81+

ATNAZ

Second year of a bachelor's degree in computer science

2024/2025

Contents

I Numerical analysis and scientific computing

- I.1 Machine Representation of Numbers
- I.2 Rounding Errors
- 1.3 Stability and Error Analysis of Numerical Methods and Problem Conditioning

+800+81+

ATNA

II Matrix Analysis

- II.1 Vector Spaces
- II.2 Matrices
- II.3 Norms and Inner Product

III Direct methods for solving linear systems

- III.1 Introduction
- III.2 Gaussian Elimination
- III.3 LU Factorization
- IV Iterative methods for solving linear systems
 - IV.1 General Information
 - IV.2 Jacobi and Over-Relaxation Methods

NIVER

- IV.3 Gauss-Seidel and Successive Over-relaxation Methods
- IV.4 Notes on the Implementation of Iterative Methods
- IV.5 Convergence of The Jacobi and Gauss-Seidel Methods

II Matrix Analysis

	Content
	Vector Spaces
	✤ Algebraic Structures
	Introduction to Vector Spaces
	✤ Subspaces
	 Linear Combinations and Linear Dependence
	Bases and Dimension of a Vector Space
	Linear Maps
	 Kernel and Image Spaces
\triangleright	Matrices
	Introduction to Matrices
	Operations on Matrices
	 Types of Matrices
	Trace and Determinant of a Matrix
	Inverse of a Matrix
	 Eigenvalues and Eigenvectors
	 Similar Matrices
	 Special Types of Matrices
	Link Between Linear Maps and Matrices
\succ	Norms and Inner product
	* Norms
	Inner Product

Vector Spaces

Algebraic Structures

In mathematics, **algebraic structures** are sets equipped with one or more operations that satisfy certain axioms. The most common algebraic structures are groups, rings, and fields.

Definition 1 Group

A group is a set G equipped with a single binary operation *, denoted often by (G,*) and satisfies four axioms:

- **1.** Closure: For every $a, b \in G$, the result of a * b is also in G.
- **2.** Associativity: For every $a, b, c \in G$, (a * b) * c = a * (b * c).
- **3.** Identity Element: There exists an element $e \in G$ such that for every $a \in G$, e * a = a * e = a.
- **4.** Inverse Element: For every $a \in G$, there exists an element $a' \in G$ such that a * a' = a' * a = e.

A group is called **commutative** or **abelian** if the operation * satisfies the commutative property, meaning that for any elements a and b in G, a * b = b * a.

Definition 2 Ring

A ring is a set R equipped with two binary operations: * and \perp denoted by $(R,*,\perp)$ that satisfies the following axioms:

- **1.** $(\mathbf{R},*)$ is an Abelian group.
- **2.** Associativity of \bot : For every $a, b, c \in R$, $(a \perp b) \perp c = a \perp (b \perp c)$.
- **3.** Distributive Properties: \perp distributes over *, i.e., for every $a, b, c \in R$, $a \perp (b * c) = (a \perp b) * (a \perp c)$ and $(a * b) \perp c = (a \perp c) * (b \perp c)$

Remark 2

- 1. A ring is called **commutative** if the operation \perp is commutative, meaning that for any elements *a* and *b* in *R*, $a \perp b = b \perp a$.
- 2. A ring is called **unital** (or **ring with unity**) if it has an identity element *e* for the operation \bot , meaning that for every element *a* in *R*, $a \perp e_2 = e_2 \perp a = a$

Definition 3 Field

A field is a set F equipped with two binary operations: * and \perp denoted by $(F, *, \perp)$ and satisfies the following axioms:

- **1.** $(F, *, \bot)$ is an unital ring.
- 2. Every element (except e_1) has a symmetric element.
 - For all $a \in F \setminus e_1$, there exists $a' \in F$ such that $a \perp a' = a' \perp x = e_2$.

Remark 3

A field is called **commutative field** if the operation \perp is commutative, meaning that for any elements *a* and *b* in *F*, $a \perp b = b \perp a$.

Introduction to Vector Spaces

A vector space (also called a linear space) over a field F is a set V along with two operations: vector addition and scalar multiplication on V. The elements of V are called vectors, and the elements of a field F are called scalars.

Definition 4 Vector Space

Let F be a field, a vector space V over a field F is a non-empty set that must satisfy the following axioms:

- 1. **Closure under Addition**: For every $u, v \in V$, the sum $u + v \in V$.
- 2. Closure under Scalar Multiplication: For every $v \in V$ and scalar $a \in F$, the product $a \times v \in V$.
- 3. Commutativity of Addition: For every $u, v \in V$, u + v = v + u.
- 4. Associativity of Addition: For every $u, v, w \setminus in V$, (u + v) + w = u + (v + w).
- 5. Existence of Additive Identity: $\exists 0 \in V$ such that v + 0 = v for all $v \in V$.
- 6. Existence of Additive Inverse: $\forall v \in V, \exists -v \in V$ such that v + (-v) = 0.
- 7. Associativity of Scalar Multiplication: For every $a, b \in F$ and $v \in V$, a(bv) = (ab)v.
- 8. Existence of Multiplicative Identity: $\exists 1 \in F$ such that $1 \times v = v$ for all $v \in V$.

- 9. Distributivity of Scalar Multiplication with Respect to Vector Addition: For every $a \in F$ and $u, v \in V$, a(u + v) = au + av.
- 10. Distributivity of Scalar Multiplication with Respect to Field Addition: For every $a, b \in F$ and $v \in V$, (a + b)v = av + bv.

Example 1

- 1. **Real Numbers** (\mathbb{R}): The set of all real numbers forms a vector space under standard addition and scalar multiplication.
- 2. **Coordinate Space** (\mathbb{R}^n) : The set of all (n)-tuples of real numbers forms an (n)-dimensional vector space.
- 3. **Matrices**: The set of all $(m \times n)$ matrices form a vector space.
- 4. **Polynomials**: The set of all polynomials with real coefficients forms a vector space.
- 5. **Functions**: The set of all continuous functions from $\mathbb{R} \to \mathbb{R}$ forms a vector space.

Remark 4

If F is a scalar field, then F is a vector space over F itself.

Subspaces

A subspace is a subset of a vector space that is itself a vector space under the same operations of addition and scalar multiplication.

Definition 5 Subspace

A subset W of a vector space V is called a subspace if it satisfies the following conditions:

- 1. The zero vector of V is in W.
- 2. *W* is closed under vector addition: if u and v are in W, then u + v is also in W.
- 3. *W* is closed under scalar multiplication: if *u* is in *W* and *a* is a scalar, then $a \times u$ is also in *W*.

Example 2

1. \mathbb{Q} is a subspace of \mathbb{R} .

2. The set $F = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ is a vector subspace of \mathbb{R}^2 .

Remark 5

If V is a F-vector space and W is a subspace of V, then W is itself a F-vector space for the laws induced by V.

Definition 6 Intersection of Subspaces

The intersection of two subspaces V_1 and V_2 of a vector space V is the set of all vectors that are in both V_1 and V_2 . It is denoted by $V_1 \cap V_2$ and is itself a subspace of V.

Definition 7 Sum of Subspaces

The sum of two subspaces V_1 and V_2 of a vector space V is the set of all possible sums of elements from V_1 and V_2 . It is denoted by $V_1 + V_2$ and is also a subspace of V.

Suppose V_1, \dots, V_m are subspaces of V.

Then $V_1 + \dots + V_m = \{v_1 + \dots + v_m : v_k \in V_k, k \in \{1, \dots, m\}\}$

Linear Combinations and Linear Independence

Linear Combinations

A linear combination of vectors involves expressing one vector as a weighted sum of other vectors.

Definition 8 Linear Combination

Given an integer $(n \ge 1)$ and vectors v_1, v_2, \dots, v_n in a vector space V.

A linear combination of these vectors is an expression of the form: $u = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$ where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are elements of the field *F* called the coefficients of the linear combination.

Linear Independence

A set of vectors is linearly independent if and only if no nontrivial linear combination of these vectors equals the zero vector. Each vector in the set cannot be expressed as a linear combination of the others.

Definition 9 Linear Independence

Given a list v_1 , v_2 , ... , v_p in a vector space V.

This list is called linearly independent if the unique solution to the equation: $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_p v_p = 0$ is the trivial solution $\lambda_1 = \lambda_2 = \cdots = \lambda_p = 0$.

Mathematically: $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0 \iff \forall i \in \{1, \dots, p\}: \lambda_i = 0$

The empty list () is also declared to be linearly independent.

Definition 10 Linear dependence

A list of vectors in V is called **linearly dependent** if it is not linearly independent.

In other words, a list v_1 , v_2 , ..., v_p of vectors in V is linearly dependent if and only if there exists at least one vector v_i , $i \in \{1, ..., p\}$ where v_i is a linear combination of the other vectors, i.e. $v_i \in span(v_1, ..., v_k)$ with k < p.

Bases and Dimension of a Vector Space

Definition 11 Span

The set of all linear combinations of a list of vectors $v_1, ..., v_m$ in V is called the **span** of $v_1, ..., v_m$, denoted by span $(v_1, ..., v_m)$.

$$span(v_1,...,v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1,...,a_m \in F\}.$$

The span of the empty list () is defined to be $\{0\}$.

If span $(v_1, ..., v_m)$ equals V, we say that the list $v_1, ..., v_m$ spans V.

Mathematically: $\forall v \in V$, $\exists \lambda_1, ..., \lambda_p \in F : v = \lambda_1 v_1 + \cdots + \lambda_m v_m$

Example 3

 $(17, -4, 2) \in span((2, 1, -3), (1, -2, 4)).$

 $(17, -4, 5) \notin span((2, 1, -3), (1, -2, 4)).$

Example 4

The list (1, 0); (0, 1); (1, 1) spans \mathbb{R}^2

Definition 12 Basis

A basis of V is a list of vectors in V that is linearly independent and spans V.

In other word, a list $v_1, ..., v_n$ of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ where $\lambda_1, ..., \lambda_n \in F$.

Mathematically: $\forall v \in E$, $\exists ! \lambda_1, ..., \lambda_n \in F : v = \lambda_1 v_1 + \cdots + \lambda_n v_n$

Remark 6

- 1. Every spanning list in a vector space can be reduced to a basis of the vector space.
- 2. Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Definition 13 Dimension

The dimension of a **finite-dimensional** vector space denoted by **dim V** is the length of any basis of the vector space.

The dimension of the vector space $\{0\}$ is 0.

Remark 7

If V is finite-dimensional and U is a subspace of V, then dim $U \leq \dim V$.

Linear Maps

Definition 14 Linear Map

A linear map or linear transformation from V to W is a function $T : V \rightarrow W$ with the following properties.

1. Additivity

 $T(u + v) = Tu + Tv \text{ for all } u, v \in V.$

2. homogeneity

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in F$ and all $v \in V$.

Remark 8

- 1. If T is a linear map from V to W, then T(0) = 0.
- 2. The set of linear maps from V to W is denoted by $\mathcal{L}(V, W)$.
- 3. The set of linear maps from V to V is denoted by $\mathcal{L}(V)$.
- 4. $\mathcal{L}(V, W)$ is a vector space with the operations of addition and scalar multiplication.

Kernel and Image Spaces

Definition 15 Kernel

For $T \in \mathcal{L}(V, W)$, the kernel of T, denoted by ker(T), is the subset of V consisting of those vectors that T maps to 0.

 $Ker(T) = \{ v \in V : T(v) = 0 \}.$

Remark 9

- 1. Ker (T) is called also the null space of T and denoted by null T.
- 2. Suppose $T \in \mathcal{L}(V, W)$. Then Ker(T) is a subspace of V.
- 3. Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if $Ker(T) = \{0\}$.

Definition 16 Range

For $T \in \mathcal{L}(V, W)$, the **range** of T is the subset of W consisting of those vectors that are equal to Tv for some $v \in V$: range $T = \{T(v) : v \in V\}$.

Remark 10

1. Suppose $T \in \mathcal{L}(V, W)$. Then range T is a subspace of W.

- 2. Let $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if range T = W.
- 3. If V is finite-dimensional, then $\dim V = \dim \ker T + \dim \operatorname{range} T$.

Matrices

Introduction to Matrices

Definition 1

Suppose *m* and *n* are nonnegative integers. An $m \times n$ matrix *A* is a rectangular array of elements of *F* with *m* rows and *n* columns:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & \cdots & a_{mn} \end{pmatrix}$$

Mathematically: In mathematics, we can write $A \in \mathcal{M}_{m,n}(F)$ or $A \in F^{m,n}$, which means that A is a matrix of size $m \times n$ with elements in F.

Example 1

$$A = \begin{pmatrix} 3 & -i & 2 \\ 6 & 55 & 5 \\ 14 & 10 & 0 \\ 9 + 15i & 0 & 5 - i \end{pmatrix}$$
 is a matrix of size 4×3 with elements in \mathbb{C} .

We can also write $A \in \mathcal{M}_{4,3}(\mathbb{C})$.

Remark 1

- 1. The notation a_{ij} denotes the entry in row *i*, and column *j* of *A*.
- 2. A can be represented as: $A = (a_{ij})$.

Operations on Matrices

In linear algebra, one relation (equality) and four operations (addition, subtraction, scalar multiplication, and matrix multiplication) are defined for matrices.

Definition 2 Equality

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two matrices.

Two matrices A and B are said to be equal if:

- 1. A and B are of the same size.
- 2. $a_{ij} = b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

Definition 3 Addition

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two matrices $1 \le i \le m$ and $1 \le j \le n$.

A + B is the matrix denoted by C such that $C = (c_{ij})$ where $c_{ij} = a_{ij} + b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

Addition is defined if the two matrices have the same number of rows and the same number of columns.

Example 2													
	(1)	17	23	6)+	(18	36	7	$10)_{-}$	(19	53	30	16	
	6	5	33	8/ '	[\] 20	4	6	29/-	[\] 26	9	39	37)	
Rem	ark	2											

- 1. The addition of matrices is commutative, meaning A + B = B + A.
- 2. The addition of matrices is associative, meaning (A + B) + C = A + (B + C).

Definition 4 Subtraction

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two matrices $1 \le i \le m$ and $1 \le j \le n$.

A - B is the matrix denoted by C such that $C = (c_{ij})$ where $c_{ij} = a_{ij} - b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

As addition subtraction is defined if the two matrices have the same number of rows and the same number of columns.

٠

Example 3

 $\begin{pmatrix} 15 & -9 \\ 8 & 10 \end{pmatrix} - \begin{pmatrix} -1 & 2 \\ 7 & 10 \end{pmatrix} = \begin{pmatrix} 16 & -11 \\ 1 & 0 \end{pmatrix}$

Definition 5 Scalar Multiplication

Let $A = (a_{ij})$ be a matrix of size $m \times n$ and α be a scalar.

The product of a scalar α by a matrix A, denoted as αA , is defined to be the matrix obtained by multiplying each element of A by α .

 $\alpha A = (\alpha \times a_{ij})$ for all $1 \le i \le m$ and $1 \le j \le n$.

Example 4

Let $A = \begin{pmatrix} 12 & 5 & 2 \\ 1 & 17 & 9 \end{pmatrix}$ be a matrix and $\alpha = 5$ be a scalar. $\alpha A = 5 \times \begin{pmatrix} 12 & 5 & 2 \\ 1 & 17 & 9 \end{pmatrix} = \begin{pmatrix} 5 \times 12 & 5 \times 5 & 5 \times 2 \\ 5 \times 1 & 5 \times 17 & 5 \times 9 \end{pmatrix} = \begin{pmatrix} 60 & 25 & 10 \\ 5 & 85 & 45 \end{pmatrix}$

Property 1

Let A and B be two matrices of the same size and let α and β be two scalars.

- 1. $\alpha A = A \alpha$.
- 2. $\alpha(\beta A) = (\alpha \beta)A$.
- 3. $(\alpha + \beta)A = \alpha A + \beta A$.
- 4. $\alpha(A+B) = \alpha A + \alpha B$.

Definition 6 Matrix Multiplication

Let $A = (a_{ik})$ be a matrix of size $m \times l$ and $B = (b_{ki})$ be a matrix of size $l \times n$.

The multiplication of two matrices *A* and *B* is defined if the number of columns of the first matrix equals the number of rows of the second matrix.

The product $A \times B$ is a matrix C of size $m \times n$, where the elements c_{ij} of the matrix C can be calculated using the following formula: $c_{ij} = \sum_{k=1}^{l} a_{ik} \times b_{kj}$.

$$\begin{pmatrix} a_{11} & \cdots & a_{1l} \\ a_{21} & \cdots & a_{2l} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{ml} \end{pmatrix}_{m \times l} \times \begin{pmatrix} b_{11} & b_{12} & \cdots & \cdots & b_{1n} \\ \vdots & \vdots & & & \vdots \\ b_{l1} & b_{l2} & \cdots & \cdots & b_{ln} \end{pmatrix}_{l \times n} = \begin{pmatrix} c_{11} & c_{12} & \cdots & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & \cdots & c_{2n} \\ \vdots & \vdots & & & \vdots \\ c_{m1} & c_{m2} & \cdots & \cdots & c_{mn} \end{pmatrix}_{m \times n}$$

Let
$$A = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 5 \\ -3 & 2 \\ 7 & 10 \end{pmatrix}$ be two matrices.

 $A \times B = (-6 \quad 9)$

Example 6

Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 10 & -2 & 7 \\ 0 & 0 & -1 \end{pmatrix}$ be two matrices.

This product is impossible, because the number of columns of the first matrix (A) does not equal to the number of rows of the second matrix (B).

Property 2

Let A, B and C be three matrices where multiplication is possible.

- 1. (AB)C = A(BC).
- 2. A(B+C) = AB + AC.
- 3. (B+C)A = BA + CA.

Remark 3

- 1. In general, matrix multiplication is not commutative $AB \neq BA$.
- 2. If $AB = 0 \Rightarrow A = 0 \lor B = 0$.

Example 7

Let
$$A = \begin{pmatrix} 5 & 1 \\ 2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ be two matrices.
 $A \times B = \begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix}$ but $B \times A = \begin{pmatrix} 2 & 0 \\ 7 & 1 \end{pmatrix}$

Example 8

Let
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ be two matrices.
 $A \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \land B \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ but $A \times B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Types of Matrices

Definition 7 Zero Matrix

Let $A = (a_{ij})$ be a matrix of size $m \times n$.

A is a zero matrix (A = 0), if all its elements are zero.

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}$$

Mathematically: $\forall a_{ij} \in A$, $a_{ij} = 0$ with $1 \le i \le m$ et $1 \le j \le n$

Example 9

Let $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ A is a zero matrix.

Definition 8 Square Matrix

Let $A = (a_{ij})$ be a matrix.

A is a square matrix if it has an equal number of rows and columns. In other words, if a matrix has dimensions $n \times n$, where n is a positive integer, then it is called a square matrix.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

The elements a_{11} , a_{22} , ..., a_{nn} are called the elements of the main diagonal.

Example 10

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

A is a square matrix because it has the same number of rows and columns.

Remark 4

If A is a square matrix we can say: A is of size $n \times n$ or of order n.

Identity Matrix Definition 9

Let $A = (a_{ij})$ be a square matrix of size $n \times n$.

An identity matrix, often denoted by I or I_n , is a square matrix with 1s on the main diagonal and 0s elsewhere.

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Mathematically: $\forall 1 \le i \le n, et \ 1 \le j \le n, \ a_{ij} = \begin{cases} 1 \ si \ i = j \\ 0 \ si \ i \ne j \end{cases}$

Example 11

Let
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

I is an identity matrix for matrices of order 3.

Definition 10 Diagonal Matrix

Let $A = (a_{ij})$ be a square matrix of size $n \times n$.

We say that A is a diagonal matrix if its elements below and above the main diagonal are all zeros.

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}$$

Mathematically: $\forall 1 \leq i \leq n, et \ 1 \leq j \leq n, i \neq j \implies a_{ij} = 0$

Example 12

 $\operatorname{Let} A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ A is a diagonal matrix.

I the identity matrix is also a diagonal matrix.

Let
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

The identity matrix is also a diagonal matrix.

Definition 11 Upper Triangular Matrix

Let $A = (a_{ij})$ be a square matrix of size $n \times n$.

We say that A is an upper triangular matrix if its elements below the main diagonal are all zeros.

 $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Mathematically: $\forall \ 1 \leq i \leq n, and \ 1 \leq j \leq n \ if \ i > j \implies a_{ij} = 0$

Example 14

Let $A = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ A is an upper triangular matrix.

Definition 12 Lower Triangular Matrix

Let $A = (a_{ij})$ be a square matrix of size $n \times n$.

We say that A is a lower triangular matrix if its elements above the main diagonal are all zeros.

 $A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$

Mathematically: $\forall 1 \le i \le n$, and $1 \le j \le n$, if $i < j \implies a_{ij} = 0$

Example 15

Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 4 & 2 \end{pmatrix}$

A is a lower triangular matrix.

Definition 13 Transpose of a Matrix

Let $A = (a_{ii})$ be a matrix of size $m \times n$.

The transpose of a matrix A, denoted by A^t , is the matrix obtained from A by interchanging rows and columns. Specifically, if A is an $m \times n$ matrix, then A^t is the $n \times m$ matrix.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \dots & a_{2n} \\ \vdots & \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & \dots & a_{mn} \end{pmatrix} \Leftrightarrow A^t = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Example 16

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \Rightarrow A^{t} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

Let $B = \begin{pmatrix} -1 & 8 & 7 \\ 3 & 5 & 6 \\ 0 & 2 & -4 \end{pmatrix} \Rightarrow B^{t} = \begin{pmatrix} -1 & 3 & 0 \\ 8 & 5 & 2 \\ 7 & 6 & -4 \end{pmatrix}$

Property 3

Let A and B be two matrices of size $m \times n$, C a matrix of size $n \times l$ and $\alpha \in F$.

- 1. $(A^t)^t = A$.
- 2. $(\alpha A)^t = \alpha A^t$.
- $3. \quad (A+B)^t = A^t + B^t.$
- 4. $(AC)^t = C^t A^t$

Definition 14 Symmetric Matrix

Let $A = (a_{ii})$ be a square matrix of order n.

A is a symmetric matrix if it is equal to its transpose.

Mathematically: $A^t = A$

Example 17

Let
$$A = \begin{pmatrix} 1 & -3 & 0 \\ -3 & 2 & 5 \\ 0 & 5 & 3 \end{pmatrix}$$

A is a symmetric matrix because: $A^t = \begin{pmatrix} 1 & -3 & 0 \\ -3 & 2 & 5 \\ 0 & 5 & 3 \end{pmatrix} = A$

Definition 15 Asymmetric Matrix

Let $A = (a_{ij})$ be a square matrix of order n.

A is asymmetric matrix if $A^t = -A$.

Example 18

Let
$$A = \begin{pmatrix} 0 & -i & 5 \\ i & 0 & 3 \\ -5 & -3 & 0 \end{pmatrix}$$

A is an Asymmetric matrix because: $A^t = \begin{pmatrix} 0 & i & -5 \\ -i & 0 & -3 \\ 5 & 3 & 0 \end{pmatrix} = -A$

Remark 5

An asymmetric matrix is also called: anti-symmetric matrix or skew-symmetric matrix.

Trace and Determinant of a Matrix

Definition 16 Trace of a Matrix

Let $A = (a_{ij})$ be a square matrix of order n.

The trace of A, denoted by tr(A), is defined to be the sum of the diagonal entries of A.

Mathematically: $tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$.

Let
$$A = \begin{pmatrix} 1 & 6 & 1 \\ 4 & -7 & 3 \\ 9 & 5 & 8 \end{pmatrix} \Rightarrow tr(A) = 1 + (-7) + 8 = 2.$$

Property 4

Let A and B be two square matrices of order n.

1. tr(A + B) = tr(A) + tr(B).

- 2. $tr(\alpha A) = \alpha \cdot tr(A)$ with $\alpha \in F$.
- 3. $tr(A^T) = tr(A)$.
- 4. tr(AB) = tr(BA).

Definition 17 Determinant of a Matrix

Let $A = (a_{ii})$ be a square matrix of order n.

The determinant of a square matrix A, denoted as det(A), is a scalar calculated recursively as follows:

- 1. For n = 1, $det(A) = a_{11}$. 2. For n = 2, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Leftrightarrow det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \times a_{22} a_{21} \times a_{12}$. $\sum_{i=1}^{n} (-1)^{i+j} \times a_{ij} \times det(A_{ij})$ with $1 \le i \le n$.

Where A_{ij} is a matrix obtained from A by deleting the i^{th} row and the j^{th} column of A.

Example 20

$$A = \begin{pmatrix} 2 & 5 & -4 \\ 6 & 0 & 1 \\ 9 & 10 & 4 \end{pmatrix} \iff \begin{vmatrix} 2 & 5 & -4 \\ 6 & 0 & 1 \\ 9 & 10 & 4 \end{vmatrix} = 2 \times \begin{vmatrix} 0 & 1 \\ 10 & 4 \end{vmatrix} = 5 \begin{vmatrix} 6 & 1 \\ 9 & 4 \end{vmatrix} + (-4) \begin{vmatrix} 6 & 0 \\ 9 & 10 \end{vmatrix}$$

$$= 2 \times (0 \times 4 - 10 \times 1) - 5 \times (6 \times 4 - 9 \times 1) + (-4)(6 \times 10 - 9 \times 0) = -335$$

Inverse of a Matrix

Definition 18 Inverse of a Matrix

Let $A = (a_{ii})$ be a square matrix of order n.

The inverse of a square matrix A is a square matrix B such that $A \times B = B \times A = I_n$.

The inverse of A is defined by: $A^{-1} = \frac{1}{\det(A)} \times C^t$.

where $C = (-1)^{i+j} M_{ij}$ with $1 \le i, j \le n$ is called the cofactor matrix of A. M_{ij} is the determinant of the $(n-1) \times (n-1)$ matrix obtained by removing the i^{th} row and the j^{th} column from A.

Remark 6

1. The inverse is defined only for square matrices.

2. $det(A) \neq 0 \Leftrightarrow A^{-1}$ exists.

3. I_n is invertible, and its inverse is I_n itself.

Property 5

Let A be an invertible matrix.

1. If *A* is invertible, the inverse is unique.

2. A^{-1} is also invertible, and $(A^{-1})^{-1} = A$

Let
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \Leftrightarrow A^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

Eigenvalues and Eigenvectors

Definition 19 Eigenvalues & Eigenvectors

Let $A = (a_{ij})$ be a square matrix of order n.

 λ is called an eigenvalue of the matrix A if there exists a non-zero vector $X \in F^n$ such that $AX = \lambda X$.

The vector *X* is called the eigenvector of *A* associated with the eigenvalue λ . **Mathematically:** λ *is an eigenvalue of* $A \iff \exists X \in (F^n)^* : AX = \lambda X$. *X is an eigenvector of* $A \iff \exists \lambda \in F : AX = \lambda X$.

Example 22

Let $A = \begin{pmatrix} 6 & 3 \\ 5 & 8 \end{pmatrix}$ Show that $\lambda = 3$ is an eigenvalue of A. We know that λ is an eigenvalue of $A \Leftrightarrow \exists X \in (F^n)^* : AX = \lambda X$. So $\begin{pmatrix} 6 & 3 \\ 5 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -3 \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{cases} 6x + 3y = 3x \\ 5x + 8y = 3y \end{cases} \Rightarrow y = -x \Rightarrow \{\begin{pmatrix} x \\ -x \end{pmatrix} \text{ such that } x \in \mathbb{R}\}$ Thus, the solutions are generated by the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, which is the eigenvector associated with the eigenvalue $\lambda = 3$. **Example 23** Let $A = \begin{pmatrix} 6 & 3 \\ 5 & 8 \end{pmatrix}$ Is $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ an eigenvector of A. We know that X is an eigenvector of $A \Leftrightarrow \exists \lambda \in F : AX = \lambda X$. So $\begin{pmatrix} 6 & 3 \\ 5 & 8 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \lambda \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 0 \Rightarrow \begin{cases} 33 = 3\lambda \\ 55 = 3\lambda \end{pmatrix} \Rightarrow \lambda = 11$ Thus, $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ is an eigenvector of A and its associated eigenvalue is $\lambda = 11$.

Property 6

Let λ_1 , λ_2 , ... , λ_n be the eigenvalues associated with a given matrix A

1. $\lambda_1 + \lambda_2 + \dots + \lambda_n = tr(A)$.

2. $\lambda_1 \times \lambda_2 \times ... \times \lambda_n = det(A)$.

Definition 20 Characteristic Polynomial

Let $A = (a_{ij})$ be a square matrix of order n.

The polynomial $p(\lambda) = det(A - \lambda I)$ is called the characteristic polynomial of *A*.

Example 24

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

 $p(\lambda) = de t(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda) - 6 = \lambda^2 - 5\lambda - 2.$

Property 7

Let *P* be the characteristic polynomial of a given matrix *A*.

The eigenvalues of A are the roots of the characteristic polynomial of A.

Mathematically: λ *is an eigenvalue of* $A \Rightarrow p(\lambda) = 0$.

Example 25

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $p(\lambda) = \lambda^2 - 5\lambda - 2$. Find all eigenvalues of A.

$$p(\lambda) = \lambda^2 - 5\lambda - 2 = 0 \Longrightarrow \lambda = \frac{5 + \sqrt{33}}{2} \text{ or } \lambda = \frac{5 - \sqrt{33}}{2}.$$

Thus, the eigenvalues of *A* are $\lambda_1 = \frac{5+\sqrt{33}}{2}$ and $\lambda_2 = \frac{5-\sqrt{33}}{2}$.

Property 8

If A is a square matrix of order n then it has at most n eigenvalues.

Similar Matrices

Definition 21 Similar Matrices

Let A and B be two square matrices in $M_n(F)$.

We say that matrix B is similar to matrix A, or that A and B are similar, if there exists an invertible matrix $P \in M_n(F)$ such that $B = P^{-1} A P$.

Example 26

Let A and B be two square matrices in $M_2(\mathbb{R})$ $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 15 & 2 \\ -98 & -13 \end{pmatrix}$.

A and B are similar, because there exists an invertible matrix $P = \begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix} \in$

$$M_2(\mathbb{R})$$
 such

that $B = P^{-1} A P$

Property 9

If A and B are similar, then they have the same eigenvalues.

Special Types of Matrices

Definition 22 Positive-Definite Matrix

Let $A = (a_{ij})$ be a real square matrix of order n.

A is said to be a positive-definite matrix if $v^t Av > 0$ for all non-zero $v \in \mathbb{R}^n$. **Mathematically:** A positive definite $\Leftrightarrow v^t Av > 0, \forall v \in \mathbb{R}^n \setminus \{0\}$

Example 27

Let
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

A is a positive definite matrix.

Property 10

A is positive definite if and only if all of its eigenvalues are positive.

Definition 23 Positive Semi-Definite Matrix

Let $A = (a_{ij})$ be a real square matrix of order n.

A is said to be a positive semi-definite matrix if $v^t A v \ge 0$ for all non-zero $v \in \mathbb{R}^n$. **Mathematically:** A positive semi definite $\Leftrightarrow v^t A v \ge 0, \forall v \in \mathbb{R}^n \setminus \{0\}$

Example 28

Let $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ A is a positive semi-definite matrix.

Property 11

A is positive semi-definite if and only if all of its eigenvalues are non-negative.

Definition 24 Orthogonal Matrix

Let $A = (a_{ij})$ be a real square matrix of order n.

A is called orthogonal if its inverse is equal to its transpose. **Mathematically:** $A^{-1} = A^t \implies AA^t = I$

Example 29

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ A is an orthogonal matrix because: $A \times A^t = I$ Let $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ B is an orthogonal matrix because: $B \times B^t = I$

Definition 25 Involutory Matrix

Let $A = (a_{ij})$ be a square matrix of order n.

A is called involutory if it is equal to its own inverse.

Mathematically: $A^{-1} = A \Longrightarrow AA = A^2 = I$

Example 30

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ A is an involutory matrix because: $A \times A = I$ Let $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ B is an orthogonal matrix because: $B \times B = I$

Link Between Linear Maps and Matrices

Definition 26 Link Between Linear Maps and Matrices

Let *E* and *G* be two finite-dimensional vector spaces over the field *F* with dimensions *m* and *n*, respectively. Let $B = (b_1, ..., b_m)$ be a basis of *E* and $B' = (b'_1, ..., b'_n)$ be a basis of *G*, and let $f: E \rightarrow G$ be a linear map.

The matrix of the linear map f with respect to the bases B and B' is the matrix denoted by $Mat_{B,B'}(f) = (aij) \in M_{n,m}(F)$. This matrix is composed of columns that represent the images of the basis vectors of E under f, expressed in the basis B' of G.

Example 31

Let f be the linear map defined by: f(x, y, z) = (x + y - z, x - 2y + 3z). Let $B = (e_1, e_2, e_3)$ be the standard basis of \mathbb{R}^3 and $B' = (f_1, f_2)$ be the standard basis of \mathbb{R}^2 . 1. We need to find the images of the elements of *B* under *f*. $e_1 = (1 \ 0 \ 0) \Rightarrow f(e_1) = (1 \ 1)$ $e_2 = (0 \ 1 \ 0) \Rightarrow f(e_2) = (1 \ -2)$ $e_3 = (0 \ 0 \ 1) \Rightarrow f(e_3) = (-1 \ 3)$ 2. We need to express these images in the basis *B'* $(1 \ 1) = f_1 + f_2$ $(1 \ -2) = f_1 - 2f_2$ $(-1 \ 3) = f_1 + f_2$ Thus, $Mat_{\mathcal{B},\mathcal{B}'}(f) = \begin{pmatrix} 1 \ 1 \ -1 \\ 1 \ -2 \ 3 \end{pmatrix}$

Example 32

Let *f* be the linear map defined by: f(x, y, z) = (x + y - z, x - 2y + 3z). Let $\mathcal{A} = (\phi_1, \phi_2, \phi_3) = ((1 \ 1 \ 0), (1 \ 0 \ 1), (0 \ 1 \ 1))$ be a basis for \mathbb{R}^3 and $\mathcal{A}' = (\sigma_1, \sigma_2) = ((1 \ 0), (1 \ 1))$ be a basis for \mathbb{R}^2 .

$$p_1 = (1 \quad 1 \quad 0) \implies f(\phi_1) = (2 \quad -1) = 3o_1 - o_2$$

$$p_2 = (1 \quad 0 \quad 1) \implies f(\phi_2) = (0 \quad 4) = -4\sigma_1 + 4\sigma_2$$

$$p_3 = (0 \quad 1 \quad 1) \implies f(\phi_3) = (0 \quad 1) = -\sigma_1 + \sigma_2$$

Thus, $Mat_{\mathcal{B},\mathcal{B}'}(f) = \begin{pmatrix} 3 & -4 & -1 \\ -1 & 4 & 1 \end{pmatrix}$

Remark 7

Let $f, g: E \rightarrow F$ be two linear maps.

Let B be a basis of E and B' be a basis of F.

- 1. The matrix $Mat_{B,B'}(f)$ depends on the choice of bases.
- 2. $Mat_{\mathcal{B},\mathcal{B}'}(f+g) = Mat_{\mathcal{B},\mathcal{B}'}(f) + Mat_{\mathcal{B},\mathcal{B}'}(g).$
- 3. $Mat_{\mathcal{B},\mathcal{B}'}(\lambda f) = \lambda Mat_{\mathcal{B},\mathcal{B}'}(f).$

Remark 8

Let $f: E \to F$ and $g: F \to G$ be two linear maps and let B be a basis of E, B' a basis of F, and B'' a basis of G.

The matrix of the composition $f \circ g$ with respect to these bases is given by: $Mat_{\mathcal{B}\mathcal{B}'}(f \circ g) = Mat_{\mathcal{B}'\mathcal{B}''}(g) \times Mat_{\mathcal{B}\mathcal{B}'}(f)$

Norms and scalar products

Norms

In linear algebra, there are two main types of norms that are commonly discussed: **vector norms** and **matrix norms**.

Vector Norms

Definition 27 Vector Norms

Let V be a vector space over the field F of scalars.

A norm on V is a function $\|.\|: V \to \mathbb{R}$ that satisfies the following properties:

- 1. $||v|| = 0 \implies v = 0.$
- 2. $||v|| \ge 0$, $\forall v \in V$.

- 3. $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{K}$ and $v \in V$.
- 4. $||u + v|| \le ||u|| + ||v|| \forall u, v \in V$.

Remark 9

A norm in a vector space plays the same role as the absolute value in \mathbb{R} .

Definition 28 *p*-Norms

Let V be a vector space over the field F of scalars. Let p > 0 and $v \in V$.

The *p*-norm of *v* is defined by: $||v||_p = (|v_1|^p + |v_2|^p + \dots |v_n|^p)^{\frac{1}{p}} = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}}$ Example 33

For
$$p = 1 \implies ||v||_1 = (|v_1|^1 + |v_2|^1 + \dots + |v_n|^1)^{\frac{1}{1}} = \sum_{i=1}^n |v_i|$$

For $p = 5 \implies ||v||_1 = (|v_1|^5 + |v_2|^5 + \dots + |v_n|^5)^{\frac{1}{5}}$

Definition 29 1, 2 and
$$\infty$$
 Norms

Let V be a vector space over the field F of scalars. The following three norms are the most commonly used in practice:

1. 1-Norm (Manhattan Norm or Taxicab Norm)

 $\|v\|_1 = \sum_{i=1}^n |v_i|.$

This norm sums the absolute values of the components of the vector.

2. 2-Norm (Euclidean Norm)

 $\|v\|_2 = (\sum_{i=1}^n |v_i|^2)^{\frac{1}{2}} = \sqrt{\sum_{i=1}^n |v_i|^2}$

This norm is the square root of the sum of the squares of the components, which corresponds to the Euclidean distance from the origin.

3. ∞-Norm (Maximum Norm or Chebyshev Norm)

 $\|v\|_{\infty} = \max_{i} |v_i|.$

This norm is the maximum absolute value among the components of the vector.

Example 34

If $v = (3 \quad 4 - 3i \quad 1)$ then $||v||_1 = 9$ and $||v||_2 = \sqrt{35}$ and $||v||_{\infty} = 5$.

Matrix Norms

Definition 30 Matrix Norms

A matrix norm is a function from $\mathbb{C}^{m \times n}$ to \mathbb{R} that satisfies the following properties:

- 1. $||A|| = 0 \Longrightarrow A = 0.$
- 2. $||A|| \ge 0$, $\forall v \in V$
- 3. $\|\alpha A\| = |\alpha| \|vA\|$ for all $\alpha \in \mathbb{K}$ and $v \in \mathbb{C}^{m,n}$.
- 4. $||A + B|| \le ||A|| + ||B|| \forall A, B \in \mathbb{C}^{m,n}$.
- 5. $||AB|| \le ||A|| \cdot ||B||$ if it is possible.

Definition 31 *p*-Norms

Let p > 0 and $A \in \mathbb{C}^{m \times n}$.

The *p*-norm of *A* is defined by: $||A||_p = \sup \frac{||Ax||_p}{||x||_p} = \max_{||x||_p=1} ||Ax||_p$.

This norm is a matrix norm known as the **subordinate matrix norm** (to the given vector norm).

Definition 32 1, 2 and ∞ Norms

Let A be a matrix.

The following three norms are the most commonly used in practice:

1. 1-Norm (Maximum Absolute Column Sum Norm)

 $\|A\|_1 = \max_i \sum_i |a_{ij}|$

This norm is the maximum of the sums of the absolute values of the entries in each column.

 $\|A\|_2 = \sqrt{\lambda_{max}(A^T A)}$

3. ∞ -Norm (Maximum Absolute Row Sum Norm)

 $\|A\|_{\infty} = \max_{i} \sum_{j} |a_{ij}|.$

This norm is the maximum of the sums of the absolute values of the entries in each row.

Example 35

If
$$A = \frac{1}{\sqrt{3}} \begin{pmatrix} 3 & -1 \\ 0 & \sqrt{8} \end{pmatrix}$$
 then $\|A\|_1 = \frac{1}{\sqrt{3}} + \frac{\sqrt{8}}{\sqrt{3}}$ and $\|A\|_2 = 2$ and $\|A\|_{\infty} = \frac{4}{\sqrt{3}}$

Definition 33 Frobenius Norm

Let A be a matrix.

The Frobenius matrix norm is defined by: $||A||_F = \sqrt{tr(A^T A)} = \sqrt{\sum_{i,j} |a_{i,j}|^2}$.

This norm is analogous to the 2-norm for vectors but applied to matrices. It is the square root of the sum of the absolute squares of the matrix elements.

Example 36

If
$$A = \frac{1}{\sqrt{3}} \begin{pmatrix} 3 & -1 \\ 0 & \sqrt{8} \end{pmatrix}$$
 then $||A||_F = \sqrt{6}$

Inner Product

Definition 34 Inner Product

Inner product on a vector space V is a function that associates with each pair of vectors x and y a number, satisfying the following properties:

- 1. $\langle x | x \rangle \ge 0$.
- 2. $\langle x | x \rangle = 0 \iff x = 0.$
- 3. $\langle x | \alpha y \rangle = \alpha \langle x | y \rangle \, \forall \alpha \in F.$
- 4. $\langle x|y+z\rangle = \langle x|y\rangle + \langle x|z\rangle$
- 5. $\langle x|y\rangle = \langle y|x\rangle$

Example 37

The following function defines a dot product: $\langle A|B \rangle = tr(A^TB)$.

Remark 10

- 1. Inner product is also called dot product or scalar product.
- 2. If *V* is a vector space equipped with an inner product $\langle x | y \rangle$, then $||x|| = \sqrt{\langle x | x \rangle}$ is a norm on the space *V*.