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➢ Vector Spaces 

❖ Algebraic Structures 

In mathematics, algebraic structures are sets equipped with one or more operations that 
satisfy certain axioms. The most common algebraic structures are groups, rings, and fields.  

Definition 1 Group 

A group is a set 𝐺 equipped with a single binary operation ∗, denoted often by (𝐺,∗) and 
satisfies four axioms: 

1. Closure: For every 𝑎, 𝑏 ∈ 𝐺, the result of 𝑎 ∗ 𝑏 is also in 𝐺. 

2. Associativity: For every 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 =  𝑎 ∗ (𝑏 ∗ 𝑐). 

3. Identity Element: There exists an element 𝑒 ∈ 𝐺 such that for every 𝑎 ∈  𝐺, 𝑒 ∗ 𝑎 =

 𝑎 ∗ 𝑒 =  𝑎. 

4. Inverse Element: For every 𝑎 ∈ 𝐺, there exists an element 𝑎′ ∈ 𝐺 such that 𝑎 ∗ 𝑎′  =
 𝑎′ ∗ 𝑎 =  𝑒. 

Remark 1  



 

 

A group is called commutative or abelian if the operation ∗ satisfies the commutative 
property, meaning that for any elements 𝑎 and 𝑏 in 𝐺, 𝑎 ∗  𝑏 =  𝑏 ∗  𝑎. 

 

Definition 2 Ring 

A ring is a set 𝑅 equipped with two binary operations: ∗ and ⊥ denoted by (𝑅,∗, ⊥) that 
satisfies the following axioms: 

1. (𝑹,∗) is an Abelian group. 

2. Associativity of ⊥ : For every 𝑎, 𝑏, 𝑐 ∈  𝑅, (𝑎 ⊥ 𝑏) ⊥ 𝑐 =  𝑎 ⊥ (𝑏 ⊥ 𝑐). 

3. Distributive Properties: ⊥ distributes over ∗, i.e., for every 𝑎, 𝑏, 𝑐 ∈  𝑅, 𝑎 ⊥ (𝑏 ∗ 𝑐) =

(𝑎 ⊥ 𝑏) ∗ (𝑎 ⊥ 𝑐) and (𝑎 ∗ 𝑏) ⊥ 𝑐 = (𝑎 ⊥ 𝑐) ∗ (𝑏 ⊥ 𝑐) 

Remark 2  
1. A ring is called commutative if the operation ⊥ is commutative, meaning that for any 

elements 𝑎 and 𝑏 in 𝑅, 𝑎 ⊥ 𝑏 = 𝑏 ⊥ 𝑎. 
2. A ring is called unital (or ring with unity) if it has an identity element 𝑒 for the 

operation ⊥, meaning that for every element 𝑎 in 𝑅, 𝑎 ⊥ 𝑒2 = 𝑒2 ⊥ 𝑎 = 𝑎 
 

Definition 3 Field 

A field is a set 𝐹 equipped with two binary operations: ∗ and ⊥ denoted by (𝐹,∗, ⊥) and 
satisfies the following axioms: 

1. (𝑭,∗, ⊥) is an unital ring. 
2. Every element (except 𝒆𝟏) has a symmetric element. 

For all 𝑎 ∈ 𝐹 ∖ 𝑒1, there exists 𝑎′ ∈ 𝐹 such that 𝑎 ⊥ 𝑎′ =  𝑎′ ⊥ 𝑥 =  𝑒2 . 

Remark 3  
A field is called commutative field if the operation ⊥ is commutative, meaning that for 
any elements 𝑎 and 𝑏 in 𝐹,𝑎 ⊥ 𝑏 = 𝑏 ⊥ 𝑎. 

 

❖ Introduction to Vector Spaces 

A vector space (also called a linear space) over a field 𝐹 is a set 𝑉 along with two 
operations: vector addition and scalar multiplication on 𝑉. The elements of 𝑉 are called 
vectors, and the elements of a field 𝐹 are called scalars. 

Definition 4 Vector Space 

Let 𝐹 be a field, a vector space 𝑉 over a field 𝐹 is a non-empty set that must satisfy the 
following axioms: 

1. Closure under Addition: For every 𝑢, 𝑣 ∈ 𝑉 , the sum  𝑢 +  𝑣 ∈ 𝑉. 

2. Closure under Scalar Multiplication: For every  𝑣 ∈  𝑉  and scalar 𝑎 ∈ 𝐹 , the product 
𝑎 × 𝑣 ∈  𝑉. 

3. Commutativity of Addition: For every 𝑢, 𝑣 ∈  𝑉, 𝑢 +  𝑣 =  𝑣 +  𝑢. 

4. Associativity of Addition: For every 𝑢, 𝑣, 𝑤 \𝑖𝑛 𝑉, (𝑢 +  𝑣)  +  𝑤 =  𝑢 + (𝑣 +  𝑤). 

5. Existence of Additive Identity: ∃ 0 ∈ 𝑉 such that 𝑣 +  0 =  𝑣 for all 𝑣 ∈ 𝑉. 

6. Existence of Additive Inverse: ∀ 𝑣 ∈ 𝑉, ∃ − 𝑣 ∈ 𝑉 such that 𝑣 + (−𝑣)  =  0. 

7. Associativity of Scalar Multiplication: For every 𝑎, 𝑏 ∈ 𝐹 and 𝑣 ∈ 𝑉, 𝑎(𝑏𝑣)  =  (𝑎𝑏)𝑣. 

8. Existence of Multiplicative Identity: ∃ 1 ∈ 𝐹 such that 1 × 𝑣 =  𝑣 for all 𝑣 ∈ 𝑉. 



 

 

9. Distributivity of Scalar Multiplication with Respect to Vector Addition: For every 𝑎 ∈
𝐹 and 𝑢, 𝑣 ∈ 𝑉, 𝑎(𝑢 +  𝑣)  =  𝑎𝑢 +  𝑎𝑣. 

10. Distributivity of Scalar Multiplication with Respect to Field Addition: For every 𝑎, 𝑏 ∈
𝐹 and 𝑣 ∈ 𝑉, (𝑎 +  𝑏)𝑣 =  𝑎𝑣 +  𝑏𝑣. 

Example 1  
1. Real Numbers (ℝ): The set of all real numbers forms a vector space under standard 

addition and scalar multiplication. 

2. Coordinate Space (ℝ𝑛): The set of all (n)-tuples of real numbers forms an (n)-
dimensional vector space. 

3. Matrices: The set of all (𝑚 ×  𝑛) matrices form a vector space. 

4. Polynomials: The set of all polynomials with real coefficients forms a vector space. 

5. Functions: The set of all continuous functions from ℝ → ℝ forms a vector space. 

Remark 4   
If 𝐹 is a scalar field, then 𝐹 is a vector space over 𝐹 itself. 

 

❖ Subspaces 

A subspace is a subset of a vector space that is itself a vector space under the same operations 
of addition and scalar multiplication. 

Definition 5 Subspace 
A subset 𝑊 of a vector space 𝑉 is called a subspace if it satisfies the following conditions: 

1. The zero vector of 𝑉 is in 𝑊. 

2. 𝑾 is closed under vector addition: if 𝑢 and 𝑣 are in 𝑊, then 𝑢 +  𝑣 is also in 𝑊. 

3. 𝑾 is closed under scalar multiplication: if 𝑢 is in 𝑊 and 𝑎 is a scalar, then 𝑎 × 𝑢 is 
also in 𝑊. 

Example 2   
1. ℚ is a subspace of ℝ. 

2. The set 𝐹 = {(𝑥, 𝑦)  ∈  ℝ2 | 𝑥 +  𝑦 =  0} is a vector subspace of ℝ2. 

Remark 5   
If 𝑉 is a 𝐹- vector space and W is a subspace of V, then W is itself a 𝐹- vector space for the 
laws induced by 𝑉. 

Definition 6 Intersection of Subspaces 
The intersection of two subspaces 𝑉1 and 𝑉2 of a vector space 𝑉 is the set of all vectors 
that are in both 𝑉1 and 𝑉2 . It is denoted by 𝑉1 ∩ 𝑉2 and is itself a subspace of 𝑉. 

Definition 7 Sum of Subspaces 
The sum of two subspaces 𝑉1 and 𝑉2 of a vector space 𝑉 is the set of all possible sums of 
elements from 𝑉1 and 𝑉2. It is denoted by 𝑉1  + 𝑉2 and is also a subspace of 𝑉. 

Suppose 𝑉1, … , 𝑉𝑚 are subspaces of 𝑉.  
Then 𝑉1  +  ⋯ + 𝑉𝑚  =  {𝑣1  +  ⋯ + 𝑣𝑚 ∶  𝑣𝑘  ∈  𝑉𝑘 , 𝑘 ∈ {1,… ,𝑚}} 

 

❖ Linear Combinations and Linear Independence 

Linear Combinations 



 

 

A linear combination of vectors involves expressing one vector as a weighted sum of other 
vectors. 

Definition 8 Linear Combination 
Given an integer (𝑛 ≥  1) and vectors 𝑣1, 𝑣2, …  , 𝑣𝑛 in a vector space 𝑉. 

A linear combination of these vectors is an expression of the form: 𝒖 = 𝝀𝟏𝒗𝟏 + 𝝀𝟐𝒗𝟐  +
⋯ + 𝝀𝒏 𝒗𝒏 where 𝜆1, 𝜆2, … , 𝜆𝑛 are elements of the field 𝐹 called the coefficients of the 
linear combination. 

Linear Independence 

A set of vectors is linearly independent if and only if no nontrivial linear combination of 
these vectors equals the zero vector. Each vector in the set cannot be expressed as a linear 
combination of the others. 

Definition 9 Linear Independence 
Given a list 𝑣1, 𝑣2, …  , 𝑣𝑝 in a vector space 𝑉. 

This list is called linearly independent if the unique solution to the equation: 𝝀𝟏𝒗𝟏 +
𝝀𝟐𝒗𝟐  + ⋯ + 𝝀𝒑 𝒗𝒑 = 𝟎 is the trivial solution 𝝀𝟏  = 𝝀𝟐  = ⋯  = 𝝀𝒑  =  𝟎. 

Mathematically: 𝝀𝟏𝒗𝟏  + ⋯+ 𝝀𝒑𝒗𝒑 = 𝟎⟺ ∀𝒊 ∈ {𝟏,… , 𝒑} ∶  𝝀𝒊 = 𝟎  

The empty list ( ) is also declared to be linearly independent. 

Definition 10 Linear dependence 
A list of vectors in 𝑉 is called linearly dependent if it is not linearly independent. 

In other words, a list 𝑣1, 𝑣2, …  , 𝑣𝑝 of vectors in 𝑉 is linearly dependent if and only if 

there exists at least one vector 𝑣𝑖 , 𝑖 ∈ {1, . . , 𝑝} where 𝑣𝑖  is a linear combination of the 
other vectors, i.e. 𝑣𝑖 ∈ 𝑠𝑝𝑎𝑛 (𝑣1, … , 𝑣𝑘) 𝑤𝑖𝑡ℎ 𝑘 < 𝑝. 

 
❖ Bases and Dimension of a Vector Space 

Definition 11 Span 
The set of all linear combinations of a list of vectors 𝑣1, … , 𝑣𝑚 in 𝑉 is called the span of 
𝑣1, … , 𝑣𝑚, denoted by 𝑠𝑝𝑎𝑛 (𝑣1, … , 𝑣𝑚). 
𝒔𝒑𝒂𝒏 (𝒗𝟏, … , 𝒗𝒎)  =  {𝒂𝟏𝒗𝟏  +  ⋯ + 𝒂𝒎𝒗𝒎  ∶  𝒂𝟏, … , 𝒂𝒎  ∈  𝑭}.  

The span of the empty list ( ) is defined to be {0}. 

If 𝑠𝑝𝑎𝑛 (𝑣1, … , 𝑣𝑚) equals 𝑉, we say that the list 𝑣1, … , 𝑣𝑚 spans 𝑉. 

Mathematically: ∀ 𝒗 ∈ 𝑽 , ∃ 𝝀𝟏, … , 𝝀𝒑 ∈  𝑭 ∶  𝒗 =  𝝀𝟏𝒗𝟏  + ⋯+ 𝝀𝒎𝒗𝒎  

Example 3  
(17,−4, 2) ∈  𝑠𝑝𝑎𝑛 ((2, 1, −3), (1, −2, 4)).  

(17,−4, 5) ∉  𝑠𝑝𝑎𝑛 ((2, 1, −3), (1, −2, 4)).  

Example 4  
The list (1, 0); (0, 1); (1, 1) spans ℝ2 

 

Definition 12 Basis 
A basis of 𝑉 is a list of vectors in 𝑉 that is linearly independent and spans 𝑉. 



 

 

In other word, a list 𝑣1, … , 𝑣𝑛 of vectors in 𝑉 is a basis of 𝑉 if and only if every 𝑣 ∈  𝑉 can 
be written uniquely in the form 𝒗 = 𝝀𝟏𝒗𝟏  + ⋯ + 𝝀𝒏𝒗𝒏 where 𝜆1, … , 𝜆𝑛 ∈ 𝐹. 
 
Mathematically: ∀ 𝒗 ∈ 𝑬 , ∃! 𝝀𝟏, … , 𝝀𝒏 ∈  𝑭 ∶  𝒗 =  𝝀𝟏𝒗𝟏  + ⋯+ 𝝀𝒏𝒗𝒏  

Remark 6  
1. Every spanning list in a vector space can be reduced to a basis of the vector space. 

2. Every linearly independent list of vectors in a finite-dimensional vector space can be 
extended to a basis of the vector space. 
 

Definition 13 Dimension 
The dimension of a finite-dimensional vector space denoted by 𝒅𝒊𝒎 𝑽 is the length of 
any basis of the vector space. 

The dimension of the vector space {0} is 0. 

Remark 7   
If 𝑉 is finite-dimensional and 𝑈 is a subspace of 𝑉, then dim 𝑈 ≤ dim 𝑉. 

 

❖ Linear Maps 

Definition 14 Linear Map 
A linear map or linear transformation from 𝑉 to 𝑊 is a function 𝑇 ∶  𝑉 →  𝑊 with the 
following properties. 
1. Additivity 
𝑇(𝑢 +  𝑣)  =  𝑇𝑢 +  𝑇𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈  𝑉.  
2. homogeneity 
𝑇(𝜆𝑣)  =  𝜆(𝑇𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈  𝐹 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑣 ∈  𝑉.  

Remark 8   
1. If 𝑇 is a linear map from 𝑉 to 𝑊, then 𝑇(0)  =  0. 
2. The set of linear maps from 𝑉 to 𝑊 is denoted by ℒ(𝑉,𝑊). 
3. The set of linear maps from 𝑉 to 𝑉 is denoted by ℒ(𝑉). 
4. ℒ(𝑉,𝑊) is a vector space with the operations of addition and scalar multiplication. 
 

❖ Kernel and Image Spaces 

Definition 15 Kernel 
For 𝑇 ∈  ℒ(𝑉,𝑊), the kernel of 𝑇, denoted by 𝒌𝒆𝒓(𝑻), is the subset of 𝑉 consisting of 
those vectors that 𝑇 maps to 0.  
𝑲𝒆𝒓 (𝑻)  =  {𝒗 ∈  𝑽 ∶  𝑻(𝒗 ) =  𝟎}. 

Remark 9  
1. 𝐾𝑒𝑟 (𝑇) is called also the null space of 𝑇 and denoted by 𝑛𝑢𝑙𝑙 𝑇. 
2. Suppose 𝑇 ∈  ℒ(𝑉,𝑊). Then 𝐾𝑒𝑟(𝑇) is a subspace of 𝑉. 
3. Let 𝑇 ∈  ℒ(𝑉,𝑊). Then 𝑇 is injective if and only if 𝐾𝑒𝑟 (𝑇)  =  {0}. 

 

Definition 16 Range 
For 𝑇 ∈  ℒ(𝑉,𝑊), the range of 𝑇 is the subset of 𝑊 consisting of those vectors that are 
equal to 𝑇𝑣 for some 𝑣 ∈  𝑉: 𝑟𝑎𝑛𝑔𝑒 𝑇 =  {𝑇(𝑣)  ∶  𝑣 ∈  𝑉}. 

Remark 10  

1. Suppose 𝑇 ∈  ℒ(𝑉,𝑊). Then 𝑟𝑎𝑛𝑔𝑒 𝑇 is a subspace of 𝑊. 



 

 

2. Let 𝑇 ∈  ℒ(𝑉,𝑊). Then 𝑇 is surjective if and only if 𝑟𝑎𝑛𝑔𝑒 𝑇 =  𝑊. 
3. If 𝑉 is finite-dimensional, then 𝑑𝑖𝑚 𝑉 =  𝑑𝑖𝑚 𝑘𝑒𝑟 𝑇 +  𝑑𝑖𝑚 𝑟𝑎𝑛𝑔𝑒 𝑇. 

 

➢ Matrices 

❖ Introduction to Matrices 

Definition 1  
Suppose 𝑚 and 𝑛 are nonnegative integers. An 𝑚 × 𝑛 matrix 𝐴 is a rectangular array of 
elements of 𝐹 with 𝑚 rows and 𝑛 columns: 

𝐴 = (

𝑎11 𝑎12
𝑎21 𝑎22

⋯ ⋯ 𝑎1𝑛
⋯ ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

  ⋮
⋯ ⋯ 𝑎𝑚𝑛

)  

 
Mathematically: In mathematics, we can write 𝐴 ∈  ℳ𝑚,𝑛(𝐹) or 𝐴 ∈ 𝐹𝑚,𝑛, which means 
that 𝐴 is a matrix of size 𝑚 ×  𝑛 with elements in 𝐹. 

Example 1  

𝐴 = (

3 −𝑖 2
6
14

9 + 15𝑖

55
10
0

5
0

5 − 𝑖

) is a matrix of size 4 × 3 with elements in ℂ. 

We can also write 𝐴 ∈  ℳ4,3 (ℂ). 

Remark 1  
1. The notation 𝑎𝑖𝑗 denotes the entry in row 𝑖, and column 𝑗 of 𝐴. 

2. 𝐴 can be represented as: 𝐴 = (𝑎𝑖𝑗). 

 

❖ Operations on Matrices 

In linear algebra, one relation (equality) and four operations (addition, subtraction, scalar 

multiplication, and matrix multiplication) are defined for matrices. 

Definition 2 Equality 
Let 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) be two matrices. 

Two matrices A and B are said to be equal if:  
1. A and B are of the same size. 
2. 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. 

 

Definition 3 Addition 
Let 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) be two matrices 1 ≤ 𝑖 ≤ 𝑚 1 ≤ 𝑗 ≤ 𝑛. 

𝐴 +  𝐵 is the matrix denoted by 𝐶 such that 𝐶 = (𝑐𝑖𝑗) where 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 for all 1 ≤

𝑖 ≤ 𝑚 1 ≤ 𝑗 ≤ 𝑛. 

Addition is defined if the two matrices have the same number of rows and the same 
number of columns. 

Example 2  

(
1 17
6 5

23 6
33 8

) + (
18 36
20 4

7 10
6 29

) = (
19 53
26 9

30 16
39 37

)  

Remark 2  



 

 

1. The addition of matrices is commutative, meaning 𝐴 + 𝐵 = 𝐵 + 𝐴. 
2. The addition of matrices is associative, meaning (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶). 

 

Definition 4 Subtraction 
Let 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) be two matrices 1 ≤ 𝑖 ≤ 𝑚 1 ≤ 𝑗 ≤ 𝑛. 

𝐴 −  𝐵 is the matrix denoted by 𝐶 such that 𝐶 = (𝑐𝑖𝑗) where 𝑐𝑖𝑗 = 𝑎𝑖𝑗 − 𝑏𝑖𝑗 for all 1 ≤

𝑖 ≤ 𝑚 1 ≤ 𝑗 ≤ 𝑛. 

As addition subtraction is defined if the two matrices have the same number of rows and 
the same number of columns. 

Example 3  

(
15 −9
8 10

) − (
−1 2
7 10

) = (
16 −11
1 0

)  

 

Definition 5 Scalar Multiplication 
Let 𝐴 = (𝑎𝑖𝑗) be a matrix of size 𝑚 × 𝑛 and 𝛼 be a scalar. 

The product of a scalar 𝛼 by a matrix 𝐴, denoted as 𝛼𝐴, is defined to be the matrix 

obtained by multiplying each element of 𝐴 by 𝛼. 

𝛼𝐴 =  (𝛼 × 𝑎𝑖𝑗) for all 1 ≤ 𝑖 ≤ 𝑚 1 ≤ 𝑗 ≤ 𝑛. 

Example 4  

Let 𝐴 = (
12 5 2
1 17 9

)  be a matrix and 𝛼 = 5 be a scalar. 

𝛼𝐴 = 5 × (
12 5 2
1 17 9

) = (
5 × 12 5 × 5 5 × 2
5 × 1 5 × 17 5 × 9

)  = (
60 25 10
5 85 45

)  

Property 1  
Let 𝐴 and 𝐵 be two matrices of the same size and let 𝛼  and 𝛽 be two scalars. 
1. 𝛼𝐴 = 𝐴𝛼

2. 𝛼(𝛽𝐴) = (𝛼𝛽)𝐴

3. (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴

4. 𝛼(𝐴 + 𝐵) =  𝛼𝐴 + 𝛼𝐵

 

Definition 6 Matrix Multiplication 
Let 𝐴 = (𝑎𝑖𝑘) be a matrix of size 𝑚× 𝑙 and 𝐵 = (𝑏𝑘𝑗) be a matrix of size 𝑙 × 𝑛. 

The multiplication of two matrices 𝐴 and 𝐵 is defined if the number of columns of the 

first matrix equals the number of rows of the second matrix. 

The product 𝐴 × 𝐵 is a matrix 𝐶 of size 𝑚 × 𝑛, where the elements 𝑐𝑖𝑗 of the matrix 𝐶 can 

be calculated using the following formula: 𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘 × 𝑏𝑘𝑗
𝑙
𝑘=1 . 

(

𝑎11 ⋯ 𝑎1𝑙
𝑎21
⋮

⋯
 

𝑎2𝑙
⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑙

)

𝑚×𝑙

× (
𝑏11 𝑏12 ⋯ ⋯ 𝑏1𝑛
⋮ ⋮        ⋮
𝑏𝑙1 𝑏𝑙2 ⋯ ⋯ 𝑏𝑙𝑛

)

𝑙×𝑛

= (

𝑐11 𝑐12 … … 𝑐1𝑛
𝑐21 𝑐22 … … 𝑐2𝑛
⋮
𝑐𝑚1

⋮
𝑐𝑚2

 
…

 
…

⋮
𝑐𝑚𝑛

)

𝑚×𝑛

  

 

Example 5  

Let 𝐴 = (1 2 0)  and 𝐵 = (
0 5
−3 2
7 10

) be two matrices. 



 

 

𝐴 × 𝐵 = (−6 9)  

Example 6  

Let 𝐴 = (
1 2 3
4 5 6

) and 𝐵 = (
10 −2 7
0 0 −1

) be two matrices. 

This product is impossible, because the number of columns of the first matrix (𝐴) does 
not equal to the number of rows of the second matrix (𝐵). 

Property 2  
Let 𝐴, 𝐵 and 𝐶 be three matrices where multiplication is possible

 (𝐴𝐵)𝐶 =  𝐴 (𝐵𝐶).
 𝐴(𝐵 + 𝐶)  =  𝐴𝐵 + 𝐴𝐶.
 (𝐵 + 𝐶)𝐴 =  𝐵𝐴 + 𝐶𝐴.

Remark 3  
1. In general, matrix multiplication is not commutative 𝐴𝐵 ≠ 𝐵𝐴. 
2. If 𝐴𝐵 = 0 ⇏ 𝐴 = 0 ∨ 𝐵 = 0. 

Example 7  

Let 𝐴 = (
5 1
2 0

)  and 𝐵 = (
0 1
1 1

) be two matrices. 

𝐴 × 𝐵 = (
1 6
0 2

) but 𝐵 × 𝐴 = (
2 0
7 1

) 

Example 8  

Let 𝐴 = (
0 0
1 0

)  and 𝐵 = (
0 0
2 0

) be two matrices. 

𝐴 ≠ (
0 0
0 0

) ∧ 𝐵 ≠ (
0 0
0 0

) but 𝐴 × 𝐵 = (
0 0
0 0

) 

 

❖ Types of Matrices 

Definition 7 Zero Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a matrix of size 𝑚 × 𝑛.  

𝐴 is a zero matrix  (𝐴 =  0), if all its elements are zero. 

𝐴 = (

0 0
0 0

⋯ ⋯ 0
⋯ ⋯ 0

⋮ ⋮
0 0

  ⋮
⋯ ⋯ 0

)  

 

Mathematically: ∀𝑎𝑖𝑗 ∈ 𝐴, 𝑎𝑖𝑗 = 0 𝑤𝑖𝑡ℎ 1 ≤ 𝑖 ≤ 𝑚 𝑒𝑡 1 ≤ 𝑗 ≤ 𝑛 

Example 9  

Let 𝐴 = (
0 0 0
0 0 0

)

𝐴 is a zero matrix. 
 

Definition 8 Square Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a matrix. 

𝐴 is a square matrix if it has an equal number of rows and columns. In other words, if a 

matrix has dimensions 𝑛 × 𝑛, where 𝑛 is a positive integer, then it is called a square 

matrix. 



 

 

𝐴 = (

𝑎11 𝑎12
𝑎21 𝑎22

… 𝑎1𝑛
… 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
… 𝑎𝑛𝑛

)  

The elements 𝑎11, 𝑎22, … , 𝑎𝑛𝑛 are called the elements of the main diagonal. 

Example 10  

Let 𝐴 = (
1 2 3
4 5 6
7 8 9

)

𝐴 is a square matrix because it has the same number of rows and columns. 

Remark 4  
If 𝐴 is a square matrix we can say: 𝐴 is of size 𝑛 × 𝑛 or of order 𝑛. 

 

Definition 9 Identity Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of size 𝑛 × 𝑛. 

An identity matrix, often denoted by 𝐼 or 𝐼𝑛 , is a square matrix with 1s on the main 

diagonal and 0s elsewhere. 

𝐼 = (

1 0
0 1

… 0
⋱ ⋮

⋮ ⋱
0 …

⋱ 0
0 1

)  

Mathematically: ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑒𝑡 1 ≤ 𝑗 ≤ 𝑛, 𝑎𝑖𝑗 = {
1 𝑠𝑖 𝑖 = 𝑗
0 𝑠𝑖 𝑖 ≠ 𝑗

  

Example 11                                    

Let 𝐼 = (
1 0 0
0 1 0
0 0 1

)

𝐼 is an identity matrix for matrices of order 3. 
 

Definition 10 Diagonal Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of size 𝑛 × 𝑛. 

We say that 𝐴 is a diagonal matrix if its elements below and above the main diagonal are 

all zeros. 

: 𝐴 = (

𝑎11 0
0 𝑎22

… 0
⋱ ⋮

⋮    ⋱
0     …

⋱ 0
0 𝑎𝑛𝑛

)  

Mathematically: ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑒𝑡 1 ≤ 𝑗 ≤ 𝑛, 𝑖 ≠  𝑗 ⟹  𝑎𝑖𝑗  =  0  

Example 12  

Let 𝐴 = (
1 0 0
0 2 0
0 0 3

)

𝐴 is a diagonal matrix. 
𝐼 the identity matrix is also a diagonal matrix. 

Example 13  



 

 

Let 𝐼 = (

1 0
0 1

… 0
⋱ ⋮

⋮ ⋱
0 …

⋱ 0
0 1

)  

The identity matrix is also a diagonal matrix. 
 

Definition 11 Upper Triangular Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of size 𝑛 × 𝑛. 

We say that 𝐴 is an upper triangular matrix if its elements below the main diagonal are all 

zeros. 

𝐴 = (

𝑎11 𝑎12
0 𝑎22

… 𝑎1𝑛
… 𝑎2𝑛

⋮    ⋮
0     0

⋱ ⋮
… 𝑎𝑛𝑛

)  

Mathematically: ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛 𝑖𝑓 𝑖 >  𝑗 ⟹  𝑎𝑖𝑗  =  0  

Example 14  

Let 𝐴 = (
1 0 5
0 2 1
0 0 3

)

𝐴 is an upper triangular matrix.  
 

Definition 12 Lower Triangular Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of size 𝑛 × 𝑛. 

We say that 𝐴 is a lower triangular matrix if its elements above the main diagonal are all 

zeros. 

𝐴 = (

𝑎11 0
𝑎21 𝑎22

… 0
… 0

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
… 𝑎𝑛𝑛

)  

Mathematically: ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛, 𝑖𝑓 𝑖 <  𝑗 ⟹  𝑎𝑖𝑗  =  0 

Example 15  

Let 𝐴 = (
1 0 0
3 2 0
0 4 2

)

𝐴 is a lower triangular matrix. 
 

Definition 13 Transpose of a Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a matrix of size 𝑚 × 𝑛. 

The transpose of a matrix 𝐴, denoted by 𝐴𝑡, is the matrix obtained from 𝐴 by 

interchanging rows and columns. Specifically, if 𝐴 is an 𝑚× 𝑛 matrix, then 𝐴𝑡 is the 

𝑛 × 𝑚 matrix. 

𝐴 = (

𝑎11 𝑎12 … … 𝑎1𝑛
𝑎21 𝑎22 … … 𝑎2𝑛
⋮
𝑎𝑚1

⋮
𝑎𝑚2

 
…

 
…

⋮
𝑎𝑚𝑛

)⟺ 𝐴𝑡 =

(

 
 

𝑎11
𝑎12

𝑎21
𝑎22

⋯
⋯

𝑎𝑚1
𝑎𝑚2

⋮
⋮
𝑎1𝑛

⋮
⋮
𝑎2𝑛

 
 
…

⋮
⋮
𝑎𝑚𝑛)

 
 

  



 

 

Example 16  

Let 𝐴 = (
1 2
3 4
5 6

) ⇒ 𝐴𝑡 = (
1 3 5
2 4 6

)

Let 𝐵 = (
−1 8 7
3 5 6
0 2 −4

) ⇒ 𝐵𝑡 = (
−1 3 0
8 5 2
7 6 −4

) 

Property 3  
Let 𝐴 and 𝐵 be two matrices of size 𝑚 × 𝑛, 𝐶 a matrix of size 𝑛 × 𝑙 and 𝛼 ∈ 𝐹. 

 (𝐴𝑡)𝑡 = 𝐴

 (𝛼𝐴)𝑡 = 𝛼𝐴𝑡

 (𝐴 + 𝐵)𝑡 = 𝐴𝑡 + 𝐵𝑡

 (𝐴𝐶)𝑡 = 𝐶𝑡𝐴𝑡

 

Definition 14 Symmetric Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

𝐴 is a symmetric matrix if it is equal to its transpose. 

Mathematically:  𝐴𝑡 = 𝐴 

Example 17  

Let 𝐴 = (
1 −3 0
−3 2 5
0 5 3

)

𝐴 is a symmetric matrix because: 𝐴𝑡 = (
1 −3 0
−3 2 5
0 5 3

) = 𝐴 

 

Definition 15 Asymmetric Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

𝐴 is asymmetric matrix if 𝐴𝑡 = −𝐴. 

Example 18  

Let 𝐴 = (
0 −𝑖 5
𝑖 0 3
−5 −3 0

)

𝐴 is an Asymmetric matrix because: 𝐴𝑡 = (
0 𝑖 −5
−𝑖 0 −3
5 3 0

) = −𝐴 

Remark 5  
An asymmetric matrix is also called: anti-symmetric matrix or skew-symmetric matrix. 

 

 

❖ Trace and Determinant of a Matrix 

Definition 16 Trace of a Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

The trace of 𝐴, denoted by 𝑡𝑟(𝐴), is defined to be the sum of the diagonal entries of 𝐴.  

Mathematically: 𝑡𝑟(𝐴) = ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛. 

Example 19  



 

 

Let 𝐴 = (
1 6 1
4 −7 3
9 5 8

) ⇒ 𝑡𝑟(𝐴) = 1 + (−7) + 8 = 2.

Property 4  
Let 𝐴 and 𝐵 be two square matrices of order 𝑛. 

 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵)

 𝑡𝑟(𝛼𝐴) = 𝛼. 𝑡𝑟(𝐴) 𝑤𝑖𝑡ℎ 𝛼 ∈ 𝐹

 𝑡𝑟(𝐴𝑇) = 𝑡𝑟(𝐴)

 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴).

Definition 17 Determinant of a Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

The determinant of a square matrix 𝐴, denoted as 𝑑𝑒𝑡(𝐴), is a scalar calculated 

recursively as follows: 

 𝑛 = 1, 𝑑𝑒𝑡(𝐴) = 𝑎11

 𝑛 = 2, 𝐴 = (
𝑎11 𝑎12
𝑎21 𝑎22

) ⟺ det(𝐴) = |
𝑎11 𝑎12
𝑎21 𝑎22

| = 𝑎11 × 𝑎22 − 𝑎21 × 𝑎12

 𝑛 > 2,  det(𝐴) = ∑ (−1)𝑖+𝑗 × 𝑎𝑖𝑗 × det (𝐴𝑖𝑗)
𝑛
𝑗=1 1 ≤ 𝑖 ≤ 𝑛

Where 𝐴𝑖𝑗 is a matrix obtained from 𝐴 by deleting the 𝑖^𝑡ℎ row and the 𝑗𝑡ℎ column of 𝐴. 

Example 20  

𝐴 = (
2 5 −4
6 0 1
9 10 4

) ⟺ |
2 5 −4
6 0 1
9 10 4

| = 2 × |
0 1
10 4

| − 5 |
6 1
9 4

| + (−4) |
6 0
9 10

|  

 
    = 2 × (0 × 4 − 10 × 1) − 5 × (6 × 4 − 9 × 1) + (−4)(6 × 10 − 9 × 0) = −335  

 

❖ Inverse of a Matrix 

Definition 18 Inverse of a Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

The inverse of a square matrix 𝐴 is a square matrix 𝐵 such that 𝐴 ×  𝐵 =  𝐵 ×  𝐴 =  𝐼𝑛. 

The inverse of 𝐴 is defined by: 𝐴−1 =
1

det (𝐴)
× 𝐶𝑡. 

where 𝐶 = (−1)𝑖+𝑗𝑀𝑖𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is called the cofactor matrix of 𝐴. 𝑀𝑖𝑗 is the 

determinant of the (𝑛 − 1) × (𝑛 − 1) matrix obtained by removing the 𝑖𝑡ℎ row and the 

𝑗𝑡ℎ column from 𝐴. 

Remark 6  
1. The inverse is defined only for square matrices. 
2. 𝑑𝑒𝑡(𝐴) ≠ 0 ⟺ 𝐴−1 𝑒𝑥𝑖𝑠𝑡𝑠. 
3. 𝐼𝑛 is invertible, and its inverse is 𝐼𝑛 itself. 

Property 5  
Let 𝐴 be an invertible matrix. 
1. If 𝐴 is invertible, the inverse is unique. 
2. 𝐴−1 is also invertible, and (𝐴−1)−1 = 𝐴 

Example 21  

Let 𝐴 = (
1 2
0 1

) ⟺ 𝐴−1 = (
1 −2
0 1

) 



 

 

❖ Eigenvalues and Eigenvectors 

Definition 19 Eigenvalues & Eigenvectors 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

𝜆 is called an eigenvalue of the matrix 𝐴 if there exists a non-zero vector 𝑋 ∈ 𝐹𝑛 such 

that 𝑨𝑿 = 𝝀𝑿.  

The vector 𝑋 is called the eigenvector of 𝐴 associated with the eigenvalue 𝜆. 

Mathematically:  𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴 ⟺ ∃𝑋 ∈ (𝐹𝑛)∗ ∶  𝐴𝑋 =  𝜆𝑋. 
             𝑋 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴 ⟺ ∃𝜆 ∈ 𝐹 ∶  𝐴𝑋 =  𝜆𝑋. 

Example 22  

Let 𝐴 = (
6 3
5 8

) 

Show that 𝜆 =  3 is an eigenvalue of 𝐴. 
We know that 𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴 ⟺ ∃𝑋 ∈ (𝐹𝑛)∗ ∶  𝐴𝑋 =  𝜆𝑋.  

So (
6 3
5 8

) (
𝑥
𝑦) = −3(

𝑥
𝑦) ⟹ {

6𝑥 + 3𝑦 = 3𝑥
5𝑥 + 8𝑦 = 3𝑦

⟹ 𝑦 = −𝑥 ⟹ {(
𝑥
−𝑥
) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ ℝ} 

Thus, the solutions are generated by the vector (
1
−1
), which is the eigenvector 

associated with the eigenvalue 𝜆 = 3. 

Example 23  

Let 𝐴 = (
6 3
5 8

) 

Is (
3
5
) an eigenvector of 𝐴. 

We know that 𝑋 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴 ⟺ ∃𝜆 ∈ 𝐹 ∶  𝐴𝑋 =  𝜆𝑋. 

So (
6 3
5 8

) (
3
5
) = 𝜆 (

3
5
) = 0 ⟹ {

33 = 3𝜆
55 = 3𝜆

⟹ 𝜆 = 11 

Thus, (
3
5
) is an eigenvector of 𝐴 and its associated eigenvalue is 𝜆 = 11. 

Property 6  
Let 𝜆1 , 𝜆2, … , 𝜆𝑛 be the eigenvalues associated with a given matrix 𝐴 

 𝜆1 + 𝜆2 + …+ 𝜆𝑛 = 𝑡𝑟(𝐴)

 𝜆1 × 𝜆2 × …× 𝜆𝑛 = 𝑑𝑒𝑡 (𝐴)

 

Definition 20 Characteristic Polynomial 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

The polynomial 𝑝(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) is called the characteristic polynomial of 𝐴. 

Example 24  

Let 𝐴 = (
1 2
3 4

) 

𝑝(𝜆) = 𝑑𝑒 𝑡(𝐴 − 𝜆𝐼) = |
1 − 𝜆 2
3 4 − 𝜆

| = (1 − 𝜆)(4 − 𝜆) − 6 = 𝜆2 − 5𝜆 − 2. 

Property 7  
Let 𝑃 be the characteristic polynomial of a given matrix 𝐴. 
The eigenvalues of 𝐴 are the roots of the characteristic polynomial of 𝐴. 
Mathematically: 𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴 ⟹ 𝑝(𝜆) = 0.  

Example 25  

Let 𝐴 = (
1 2
3 4

) and 𝑝(𝜆) = 𝜆2 − 5𝜆 − 2. 

Find all eigenvalues of 𝐴. 



 

 

𝑝(𝜆) = 𝜆2 − 5𝜆 − 2 = 0 ⟹ 𝜆 =
5+√33

2
𝑜𝑟 𝜆 =

5−√33

2
 . 

Thus, the eigenvalues of 𝐴 are 𝜆1 =
5+√33

2
 𝑎𝑛𝑑 𝜆2 =

5−√33

2
. 

Property 8  
If 𝐴 is a square matrix of order 𝑛 then it has at most 𝑛 eigenvalues. 

 

❖ Similar Matrices 

Definition 21 Similar Matrices 
Let 𝐴 and 𝐵 be two square matrices in 𝑀𝑛(𝐹). 

We say that matrix 𝐵 is similar to matrix 𝐴, or that 𝐴 and 𝐵 are similar, if there exists an 

invertible matrix 𝑃 ∈  𝑀𝑛(𝐹) such that 𝐵 =  𝑃−1 𝐴 𝑃. 

Example 26  
Let 𝐴 and 𝐵 be two square matrices in 𝑀2(ℝ) 

𝐴 = (
1 2
0 1

) and 𝐵 = (
15 2
−98 −13

). 

𝐴 and 𝐵 are similar, because there exists an invertible matrix 𝑃 = (
1 0
7 1

) ∈  𝑀2(ℝ) such 

that 𝐵 = 𝑃−1 𝐴 𝑃 

Property 9  
If 𝐴 and 𝐵 are similar, then they have the same eigenvalues. 

 

❖ Special Types of Matrices 

Definition 22   Positive-Definite Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a real square matrix of order 𝑛. 

𝐴 is said to be a positive-definite matrix if 𝑣𝑡𝐴𝑣 > 0 for all non-zero 𝑣 ∈ ℝ𝑛. 

Mathematically: 𝐴 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 ⟺ 𝑣𝑡𝐴𝑣 > 0, ∀𝑣 ∈ ℝ𝑛\{0} 

Example 27  

Let 𝐴 = (
2 −1 0
−1 2 −1
0 −1 2

) 

𝐴 is a positive definite matrix. 

Property 10  
𝐴 is positive definite if and only if all of its eigenvalues are positive. 

 
Definition 23      Positive Semi-Definite Matrix 

Let 𝐴 = (𝑎𝑖𝑗) be a real square matrix of order 𝑛. 

𝐴 is said to be a positive semi-definite matrix if 𝑣𝑡𝐴𝑣 ≥ 0 for all non-zero 𝑣 ∈ ℝ𝑛. 

Mathematically: 𝐴 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 ⟺ 𝑣𝑡𝐴𝑣 ≥ 0, ∀𝑣 ∈ ℝ𝑛\{0} 

Example 28  

Let 𝐴 = (
2 1 0
1 2 1
0 1 2

) 

𝐴 is a positive semi-definite matrix. 

Property 11  



 

 

𝐴 is positive semi-definite if and only if all of its eigenvalues are non-negative. 
 

Definition 24 Orthogonal Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a real square matrix of order 𝑛. 

𝐴 is called orthogonal if its inverse is equal to its transpose. 

Mathematically: 𝐴−1 = 𝐴𝑡 ⟹𝐴𝐴𝑡 = 𝐼 

Example 29  

Let 𝐴 = (
1 0
0 1

)

𝐴 is an orthogonal matrix because: 𝐴 × 𝐴𝑡 = 𝐼 

Let 𝐵 = (
0 1 0
1 0 0
0 0 1

)

𝐵 is an orthogonal matrix because: 𝐵 × 𝐵𝑡 = 𝐼 
 

Definition 25      Involutory Matrix 
Let 𝐴 = (𝑎𝑖𝑗) be a square matrix of order 𝑛. 

𝐴 is called involutory if it is equal to its own inverse. 

Mathematically: 𝐴−1 = 𝐴 ⟹ 𝐴𝐴 = 𝐴2 = 𝐼 

Example 30  

Let 𝐴 = (
1 0
0 1

)

𝐴 is an involutory matrix because: 𝐴 × 𝐴 = 𝐼 

Let 𝐵 = (
1 0 0
0 −1 0
0 0 −1

)

𝐵 is an orthogonal matrix because: 𝐵 × 𝐵 = 𝐼 

 

❖ Link Between Linear Maps and Matrices 

Definition 26       Link Between Linear Maps and Matrices 
Let 𝐸 and 𝐺 be two finite-dimensional vector spaces over the field 𝐹 with dimensions 𝑚 

and 𝑛, respectively. Let 𝐵 =  (𝑏1, … , 𝑏𝑚) be a basis of 𝐸 and 𝐵′ =  (𝑏1
′ , … , 𝑏𝑛

′ ) be a basis 

of 𝐺, and let 𝑓: 𝐸 →  𝐺 be a linear map. 

The matrix of the linear map 𝑓 with respect to the bases 𝐵 and 𝐵′ is the matrix denoted 

by 𝑀𝑎𝑡𝐵,𝐵′(𝑓) = (𝑎𝑖𝑗) ∈ 𝑀𝑛,𝑚(𝐹). This matrix is composed of columns that represent 

the images of the basis vectors of 𝐸 under 𝑓, expressed in the basis 𝐵′ of 𝐺. 

 𝑓(𝑏1) 𝑓(𝑏2) … 𝑓(𝑏𝑗) … 𝑓(𝑏𝑚)

𝑏1
′

𝑏2
′

⋮
𝑏𝑛
′

(

𝑎11
𝑎21

𝑎12
𝑎22

…
…

   𝑎1𝑗
  𝑎2𝑗

…
…

𝑎1𝑚
𝑎2𝑚

⋮
𝑎𝑛1

⋮
𝑎𝑛2

      
⋯

⋮
  𝑎𝑛𝑗

       
⋯

⋮
𝑎𝑛𝑚

)
  

Example 31  
Let 𝑓 be the linear map defined by 𝑓(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 − 𝑧, 𝑥 − 2𝑦 + 3𝑧). 

Let 𝐵 =  (𝑒1, 𝑒2, 𝑒3) be the standard basis of ℝ3 and 𝐵′ =  (𝑓1, 𝑓2) be the standard basis 
of ℝ2.  



 

 

 
1. We need to find the images of the elements of 𝐵 under 𝑓. 
𝑒1 = (1 0 0) ⟹ 𝑓(𝑒1) = (1 1)
𝑒2 = (0 1 0) ⟹ 𝑓(𝑒2) = (1 −2)
𝑒3 = (0 0 1) ⟹ 𝑓(𝑒3) = (−1 3)
2. We need to express these images in the basis 𝐵′ 
(1 1) = 𝑓1 + 𝑓2
(1 −2) = 𝑓1 − 2𝑓2
(−1 3) = 𝑓1 + 𝑓2

Thus,𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ) = (
1 1 −1
1 −2 3

)  

Example 32  
Let 𝑓 be the linear map defined by 𝑓(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 − 𝑧, 𝑥 − 2𝑦 + 3𝑧). 

Let 𝒜 = (𝜙1, 𝜙2, 𝜙3) = ((1 1 0), (1 0 1), (0 1 1)) be a basis for ℝ3 and 
𝒜′ = (𝜎1 , 𝜎2) = ((1 0), (1 1)) be a basis for ℝ2.  
 
𝜙1 = (1 1 0) ⟹ 𝑓(𝜙1) = (2 −1) = 3𝜎1 − 𝜎2  
𝜙2 = (1 0 1) ⟹ 𝑓(𝜙2) = (0 4) = −4𝜎1 + 4𝜎2  
𝜙3 = (0 1 1) ⟹ 𝑓(𝜙3) = (0 1) = −𝜎1 + 𝜎2  
 

Thus,𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ) = (
3 −4 −1
−1 4 1

) 

Remark 7  
Let 𝑓, 𝑔 ∶  𝐸 ⟶  𝐹 be two linear maps. 
Let 𝐵 be a basis of 𝐸 and 𝐵′ be a basis of 𝐹. 
1. The matrix 𝑀𝑎𝑡𝐵,𝐵′(𝑓) depends on the choice of bases. 

2. 𝑀𝑎𝑡ℬ,ℬ′( 𝑓 + 𝑔) = 𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ) + 𝑀𝑎𝑡ℬ,ℬ′( 𝑔 ). 

3. 𝑀𝑎𝑡ℬ,ℬ′(𝜆 𝑓 ) = 𝜆.𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ). 

Remark 8  
Let 𝑓: 𝐸 →  𝐹 and 𝑔: 𝐹 →  𝐺 be two linear maps and let 𝐵 be a basis of 𝐸, 𝐵′ a basis of 𝐹, 
and 𝐵′′ a basis of 𝐺.  
The matrix of the composition 𝑓 ∘ 𝑔 with respect to these bases is given by: 
𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ∘ 𝑔) = 𝑀𝑎𝑡ℬ′,ℬ′′( 𝑔) × 𝑀𝑎𝑡ℬ,ℬ′( 𝑓 ) 

 

 

➢ Norms and scalar products 

❖ Norms 

In linear algebra, there are two main types of norms that are commonly discussed: vector 

norms and matrix norms. 

Vector Norms 

Definition 27 Vector Norms 
Let 𝑉 be a vector space over the field 𝐹 of scalars.  

A norm on 𝑉 is a function ‖. ‖: 𝑉 ⟶  ℝ that satisfies the following properties: 

1. ‖𝑣‖ = 0 ⟹ 𝑣 = 0. 

2. ‖𝑣‖ ≥ 0 , ∀ 𝑣 ∈ 𝑉. 



 

 

3. ‖𝛼𝑣‖ = |𝛼|. ‖𝑣‖ for all 𝛼 ∈ 𝕂 and 𝑣 ∈ 𝑉  

 ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ ∀ 𝑢, 𝑣 ∈ 𝑉

Remark 9  
A norm in a vector space plays the same role as the absolute value in ℝ. 

 

Definition 28 𝑝-Norms 
Let 𝑉 be a vector space over the field 𝐹 of scalars. Let 𝑝 > 0 and 𝑣 ∈  𝑉.  

The 𝑝-norm of 𝑣 is defined by: ‖𝑣‖𝑝 = (|𝑣1|
𝑝 + |𝑣2|

𝑝 +⋯|𝑣𝑛|
𝑝)

1

𝑝 = (∑ |𝑣𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝  

Example 33  

For 𝑝 = 1 ⟹ ‖𝑣‖1 = (|𝑣1|
1 + |𝑣2|

1 +⋯|𝑣𝑛|
1)
1

1 = ∑ |𝑣𝑖|
𝑛
𝑖=1  

For 𝑝 = 5 ⟹ ‖𝑣‖1 = (|𝑣1|
5 + |𝑣2|

5 +⋯|𝑣𝑛|
5)
1

5 
 

Definition 29 1, 2 and ∞ Norms 
Let 𝑉 be a vector space over the field 𝐹 of scalars. 

The following three norms are the most commonly used in practice: 

1. 𝟏-Norm (Manhattan Norm or Taxicab Norm) 

‖𝑣‖1 = ∑ |𝑣𝑖|
𝑛
𝑖=1

This norm sums the absolute values of the components of the vector. 

2. 𝟐-Norm (Euclidean Norm) 

‖𝑣‖2 = (∑ |𝑣𝑖|
2𝑛

𝑖=1 )
1

2 = √∑ |𝑣𝑖|2
𝑛
𝑖=1

This norm is the square root of the sum of the squares of the components, which 

corresponds to the Euclidean distance from the origin. 

3. ∞-Norm (Maximum Norm or Chebyshev Norm) 

‖𝑣‖∞ = max
𝑖
|𝑣𝑖|

This norm is the maximum absolute value among the components of the vector. 

Example 34  
If 𝑣 = (3 4 − 3𝑖 1) then ‖𝑣‖1 = 9 and ‖𝑣‖2 = √35 and ‖𝑣‖∞ = 5. 
 

Matrix Norms 

Definition 30 Matrix Norms 
A matrix norm is a function from ℂ𝑚×𝑛 to ℝ that satisfies the following properties: 

1. ‖𝐴‖ = 0 ⟹ 𝐴 = 0

2. ‖𝐴‖ ≥ 0 , ∀ 𝑣 ∈ 𝑉
3. ‖𝛼𝐴‖ = |𝛼|. ‖𝑣𝐴‖ for all 𝛼 ∈ 𝕂 and 𝑣 ∈ ℂ𝑚,𝑛

4. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖ ∀ 𝐴, 𝐵 ∈ ℂ𝑚,𝑛

5. ‖𝐴𝐵‖ ≤ ‖𝐴‖. ‖𝐵‖ if it is possible

Definition 31          𝑝-Norms 
Let 𝑝 > 0 and 𝐴 ∈  ℂ𝑚×𝑛.  

The 𝑝-norm of 𝐴 is defined by: ‖𝐴‖𝑝 = sup
‖𝐴𝑥‖𝑝

‖𝑥‖𝑝
= max
‖𝑥‖𝑝=1

‖𝐴𝑥‖𝑝 . 

This norm is a matrix norm known as the subordinate matrix norm (to the given vector 

norm). 



 

 

 

Definition 32 1, 2 and ∞ Norms 
Let 𝐴 be a matrix. 

The following three norms are the most commonly used in practice: 

1. 𝟏-Norm (Maximum Absolute Column Sum Norm) 

‖𝐴‖1 = max
𝑗
∑ |𝑎𝑖𝑗|𝑖

This norm is the maximum of the sums of the absolute values of the entries in each 

column. 

2. 𝟐-Norm 

‖𝐴‖2 = √𝜆𝑚𝑎𝑥(𝐴𝑇𝐴)

3. ∞-Norm (Maximum Absolute Row Sum Norm) 

‖𝐴‖∞ = max
𝑖
∑ |𝑎𝑖𝑗|𝑗

This norm is the maximum of the sums of the absolute values of the entries in each row. 

Example 35  

If 𝐴 =
1

√3
(
3 −1

0 √8
) then ‖𝐴‖1 =

1

√3
+
√8

√3
 and ‖𝐴‖2 = 2 and ‖𝐴‖∞ =

4

√3
. 

 

Definition 33 Frobenius Norm 
Let 𝐴 be a matrix. 

The Frobenius matrix norm is defined by: ‖𝐴‖𝐹 = √𝑡𝑟(𝐴𝑇𝐴) = √∑ |𝑎𝑖,𝑗|
2

𝑖,𝑗 . 

This norm is analogous to the 2-norm for vectors but applied to matrices. It is the square 

root of the sum of the absolute squares of the matrix elements. 

Example 36  

If 𝐴 =
1

√3
(
3 −1

0 √8
) then ‖𝐴‖𝐹 = √6

 

❖ Inner Product 

Definition 34 Inner Product 
Inner product on a vector space 𝑉 is a function that associates with each pair of vectors 𝑥 

and 𝑦 a number, satisfying the following properties: 

1. ⟨𝑥|𝑥⟩  ≥ 0

2. ⟨𝑥|𝑥⟩ = 0 ⟺ 𝑥 = 0

3. ⟨𝑥|𝛼𝑦⟩ = 𝛼⟨𝑥|𝑦⟩ ∀𝛼 ∈ 𝐹.

4. ⟨𝑥|𝑦 + 𝑧⟩ = ⟨𝑥|𝑦⟩ + ⟨𝑥|𝑧⟩

5. ⟨𝑥|𝑦⟩ = ⟨𝑦|𝑥⟩

Example 37  
The following function defines a dot product: ⟨𝐴|𝐵⟩ = 𝑡𝑟(𝐴𝑇𝐵). 

Remark 10  
1. Inner product is also called dot product or scalar product. 

2. If 𝑉 is a vector space equipped with an inner product ⟨𝑥|𝑦⟩, then ‖𝑥‖ = √⟨𝑥|𝑥⟩ is a 
norm on the space 𝑉. 

 


