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» Vector Spaces

+» Algebraic Structures

In mathematics, algebraic structures are sets equipped with one or more operations that
satisfy certain axioms. The most common algebraic structures are groups, rings, and fields.

Definition1  Group
A group is a set G equipped with a single binary operation *, denoted often by (G,*) and
satisfies four axioms:

1. Closure: Foreverya,b € G, theresultof a * bisalsoin G.
2. Associativity: Forevery a,b,c € G, (a*b) xc = a * (b *c).
3. Identity Element: There exists an element e € G such that foreverya € G,e*xa =
axe = a.
4. Inverse Element: For every a € G, there exists an element a’ € G suchthata xa' =
a' xa = e.
Remark 1



A group is called commutative or abelian if the operation * satisfies the commutative
property, meaning that for any elementsaandbinG,a * b = b * a.

Definition 2 Ring
Aring is a set R equipped with two binary operations: * and L denoted by (R,*, 1) that
satisfies the following axioms:

1. (R,*) is an Abelian group.

2. Associativity of L : Foreverya,b,c € R,(a L b) Lc = a1l (b 1lc).

3. Distributive Properties: 1 distributes over %, i.e., foreverya,b,c € R,a L (b *c) =
(alb)yx(alc)and(a*b) Lc=(aLlc)*(bLc)

Remark 2

1. Aringis called commutative if the operation L is commutative, meaning that for any
elementsaandbinR,a L b=b>b 1 a.

2. Aringis called unital (or ring with unity) if it has an identity element e for the

operation 1, meaning that for every elementainR,a Le, = e, La=a

Definition 3 Field
A field is a set F equipped with two binary operations: * and L denoted by (F,*, L) and
satisfies the following axioms:

1. (F,*, 1) is an unital ring.
2. Every element (except e;) has a symmetric element.
Foralla € F \ e, thereexistsa’ € Fsuchthata La' = a' L x = e,.
Remark 3

A field is called commutative field if the operation L is commutative, meaning that for
anyelementsaandbinF,al b=0>b 1 a.

+* Introduction to Vector Spaces

A vector space (also called a linear space) over a field F is a set V along with two
operations: vector addition and scalar multiplication on V. The elements of V are called
vectors, and the elements of a field F are called scalars.

Definition 4  Vector Space

Let F be afield, a vector space V over a field F is a non-empty set that must satisfy the
following axioms:

1.
2.

= e 9

Closure under Addition: For everyu,v € V ,thesum u + v € V.

Closure under Scalar Multiplication: For every v € V and scalar a € F , the product
axXvevV.

Commutativity of Addition: Foreveryu,veE€ V,u + v = v + u.

Associativity of Addition: For every u,v,w\inV,(u + v) + w = u + (v + w).
Existence of Additive Identity: 3 0 € I/ suchthatv + 0 = vforallv e V.

Existence of Additive Inverse: Vv € V,3 — v € V suchthatv + (—v) = 0.
Associativity of Scalar Multiplication: For every a,b € F andv € V, a(bv) = (ab)v.
Existence of Multiplicative Identity: 3 1 € F suchthat 1 X v = vforallv eV.



9. Distributivity of Scalar Multiplication with Respect to Vector Addition: For every a €
Fandu,veV,a(u + v) = au + av.

10. Distributivity of Scalar Multiplication with Respect to Field Addition: For every a,b €
Fandv€eV,(a + b)v = av + bv.
Example 1
1. Real Numbers (R): The set of all real numbers forms a vector space under standard
addition and scalar multiplication.

2. Coordinate Space (R™): The set of all (n)-tuples of real numbers forms an (n)-
dimensional vector space.

3. Matrices: The set of all (m X n) matrices form a vector space.
4. Polynomials: The set of all polynomials with real coefficients forms a vector space.

5. Functions: The set of all continuous functions from R — R forms a vector space.
Remark 4
If F is a scalar field, then F is a vector space over F itself.

+* Subspaces

A subspaceis a subset of a vector space that is itself a vector space under the same operations
of addition and scalar multiplication.

Definition 5 Subspace
A subset W of a vector space V is called a subspace if it satisfies the following conditions:

1. The zerovectorof Visin W.
2. W is closed under vector addition: if u and v are in W, thenu + visalsoin W.

3. W:isclosed under scalar multiplication: if u is in W and a is a scalar, then a X u is
alsoin W.
Example 2
1. Qs asubspace of R.

2. ThesetF = {(x,y) € R* | x + y = 0} is a vector subspace of R?.
Remark 5
If V is a F- vector space and W is a subspace of V, then W is itself a F- vector space for the
laws induced by V.
Definition 6  Intersection of Subspaces
The intersection of two subspaces V/; and V, of a vector space V is the set of all vectors
that are in both V; and I/, . It is denoted by V; N V, and is itself a subspace of V.
Definition 7  Sum of Subspaces
The sum of two subspaces V; and V, of a vector space V is the set of all possible sums of
elements from V; and V5. It is denoted by V; + V, and is also a subspace of I/.

Suppose Vy, ..., V,, are subspaces of V.
ThenVy + -+ Vp, = {v; + -+ v, v, € Vi ,ke(l,..,m}}

¢ Linear Combinations and Linear Independence

Linear Combinations



A linear combination of vectors involves expressing one vector as a weighted sum of other
vectors.

Definition 8 Linear Combination
Given an integer (n = 1) and vectors v;, v,,... , v, in a vector space V.

A linear combination of these vectors is an expression of the form: u = 4,v{ + 4,v, +
< + A, v, where 44, 4,,..., 4, are elements of the field F called the coefficients of the
linear combination.

Linear Independence

A set of vectors is linearly independent if and only if no nontrivial linear combination of
these vectors equals the zero vector. Each vector in the set cannot be expressed as a linear
combination of the others.

Definition 9  Linear Independence
Given a list vy, vy, ... , vy inavector space V.

This list is called linearly independent if the unique solution to the equation: A;v{ +
Avy + - + 4, v, = Olisthe trivial solution 4y =4, =-- =4, = 0.
Mathematically: 4,v; + -+ 24,7, =0 Vie{l,..,p}: 4;=0

The empty list () is also declared to be linearly independent.

Definition 10 Linear dependence
A list of vectors in V is called linearly dependent if it is not linearly independent.

In other words, a list v;, vy, ... , v, of vectorsinV is linearly dependent if and only if
there exists at least one vector v;,i € {1,..,p} where v; is a linear combination of the
other vectors, i.e. v; € span (vy, ..., vy) with k < p.

+* Bases and Dimension of a Vector Space

Definition 11 Span
The set of all linear combinations of a list of vectors vy, ..., v, in V is called the span of
V4, ..., Uy, denoted by span (vy, ..., v)-
span (vq, ...,Vp) = {aqvy + - + apV, * aq,..,a, € F}

The span of the empty list () is defined to be {0}.
If span (vy, ..., V) equals V, we say that the list vy, ..., v, spans V.

Mathematically: Vv €V ,3 44,..,4, € F: v = Avq + -+ A0y
Example 3

(17,-4,2) € span ((2,1,-3),(1,-2,4)).

(17,—4,5) € span ((2,1,—-3),(1,—2,4)).
Example 4

The list (1, 0); (0,1); (1,1) spans R?

Definition 12 Basis
A basis of I is a list of vectors in V that is linearly independent and spans I/.



In other word, a list vy, ..., v, of vectors in V is a basis of VV if and only if every v € V can
be written uniquely in the formv = A44v4y + -+ + 4,v,, where 44, ..., 4, EF.

Mathematically: Vv € E ,3! 44,...,4, € F: v= A4v; + -+ A,v,
Remark 6
1. Every spanning list in a vector space can be reduced to a basis of the vector space.

2. Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space.

Definition 13 Dimension
The dimension of a finite-dimensional vector space denoted by dim V is the length of
any basis of the vector space.

The dimension of the vector space {0} is 0.

Remark 7
If V is finite-dimensional and U is a subspace of V, then dim U < dim V.

¢ Linear Maps

Definition 14 Linear Map
A linear map or linear transformation from V to W is a functionT : V — W with the
following properties.
1. Additivity
T(u +v) =Tu + Tv forallu,v € V.
2. homogeneity
T(Av) = A(Tv) forallA € Fandallv € V.
Remark 8
1. IfTisalinear map fromV to W, then T(0) = 0.
2. The set of linear maps from V to W is denoted by L(V, W).
3. The set of linear maps from V to V is denoted by L(V).
4. L(V,W) is a vector space with the operations of addition and scalar multiplication.

¢ Kernel and Image Spaces

Definition 15 Kernel
ForT € L(V,W), the kernel of T, denoted by ker(T), is the subset of VV consisting of
those vectors that T maps to 0.
Ker (T) = {veV:Tw)= 0}

Remark 9

1. Ker (T) is called also the null space of T and denoted by null T.
2. SupposeT € L(V,W).Then Ker(T) is a subspace of V.
3. LetT € L(V,W).Then T is injective if and only if Ker (T) = {0}.

Definition 16 Range

ForT € L(V,W), the range of T is the subset of W consisting of those vectors that are
equalto Tv forsomev € V:rangeT = {T(v) : v € V}.

Remark 10

1. SupposeT € L(V,W).Thenrange T is a subspace of W.



2. LetT € L(V,W).ThenT is surjective if and only if range T = W.
3. If Visfinite-dimensional, thendimV = dim ker T + dimrangeT.

> Matrices

+* Introduction to Matrices

Definition 1
Suppose m and n are nonnegative integers. An m X n matrix A is a rectangular array of
elements of F with m rows and n columns:

Ay Qi e g
Ay Ay ey,

A= g g g
Ami Amz " G

Mathematically: In mathematics, we can write A € M, ,(F) or A € F™", which means
that 4 is a matrix of size m X n with elementsin F.

Example 1
3 —i 2
6 55 5 . . . . .
A= 14 10 0 is @ matrix of size 4 X 3 with elements in C.

9+15i 0 5-i
We can also write A € M, 3 (C).

Remark 1
1. The notation a;; denotes the entry in row i, and column j of A.
2. Acan be represented as: A = (a;;).

+* Operations on Matrices

In linear algebra, one relation (equality) and four operations (addition, subtraction, scalar
multiplication, and matrix multiplication) are defined for matrices.

Definition 2 Equality
Let A = (a;;) and B = (b;;) be two matrices.

Two matrices A and B are said to be equal if:
1. Aand B are of the same size.
2. ajj=bjjforalll<i<mandl<j<n.

Definition 3  Addition
Let A = (a;;) and B = (b;j) betwomatrices1 <i<mand1 <j<n.

A + B is the matrix denoted by C such that C = (¢;;) where ¢;; = a;; + b;j forall 1 <
i<mandl <j<n.

Addition is defined if the two matrices have the same number of rows and the same
number of columns.
Example 2
(1 17 23 6)+(18 36 7 10):(19 53 30 16)
6 5 33 8 20 4 6 29 26 9 39 37
Remark 2



1. The addition of matrices is commutative, meaning A+ B = B + A.
2. The addition of matrices is associative, meaning (A+ B)+ C = A+ (B + ().

Definition 4  Subtraction
Let A = (a;;) and B = (b;;) betwo matrices1 <i<mand1<j <n.

A — B is the matrix denoted by C such that C = (c¢;;) where ¢;; = a;; — b;j forall 1 <
i<mandl <j<n.

As addition subtraction is defined if the two matrices have the same number of rows and

the same number of columns.
Example 3

15 -9 -1 2\_/16 -11
(8 10)_ (7 10)_(1 0 )
Definition 5  Scalar Multiplication
Let A = (aij) be a matrix of size m X n and « be a scalar.

The product of a scalar @ by a matrix A, denoted as a4, is defined to be the matrix
obtained by multiplying each element of A by «.

ald = (aXai]-)foralllSiSmandlSan.

Example 4
_ (12 5 2 . _
Let A = ( 1 17 9) be a r;atrlx and a = 5 be a scalar.
_ 12 5 2\ _(5%x12 5x5 5x2)\ _ (60 25 10

ad=5x (| 17 9>‘(5><1 5% 17 5><9) = (5 85 45)
Property 1

Let A and B be two matrices of the same size and let @ and 8 be two scalars.

1. aA = Aa.

2. a(BA) = (ap)A.
3. (a+p)A=ad+pA.
4. a(A+B) = aA+ aB.

Definition 6  Matrix Multiplication
Let A = (a;) be a matrix of size m X [ and B = (by;) be a matrix of size [ X n.

The multiplication of two matrices A and B is defined if the number of columns of the
first matrix equals the number of rows of the second matrix.

The product A X B is a matrix C of size m X n, where the elements ¢;; of the matrix C can

be calculated using the following formula: ¢;; = Z§<=1 Qi X by;.

c €12 - - C
a1 ay; byy b1z v o by 11 c in
azq azl % . : 5 _ Cyq 22 C2n
a, . by by e bin ' ' .
mi ml/ mxi ﬁlxn Cm1 Cmz ™ " Cmn/ pxn
Example 5

0 5
letA=(1 2 0) andB = (—3 2) be two matrices.
7 10



AXB=(-6 9)
Example 6

Let A = (Ll} é 2) and B = (100 0_2_17) be two matrices.

This product is impossible, because the number of columns of the first matrix (A) does
not equal to the number of rows of the second matrix (B).
Property 2
Let 4, B and C be three matrices where multiplication is possible.
1. (AB)C = A(BC).
2. A(B+C) = AB+ AC.
3. (B+(C)A = BA+ CA.
Remark 3
1. In general, matrix multiplication is not commutative AB # BA.
2. fAB=0#A=0vB=0.

Example 7
letA = (g (1)) and B = (2 1) be two matrices.
axB=(; SpouBxa=(37)

Example 8
LetA = (2 8) and B = ((2) 8) be two matrices.
ax(Q =) gbutaxs=(3 o)

s Types of Matrices

Definition 7 Zero Matrix
Let A = (aij) be a matrix of size m X n.

A is a zero matrix (A 0), if all its elements are zero.

0 0 ) ) O
a=19 7 ;
0 0 e ) O

Mathematically: Va;; € 4,a;; =0with1<i<metl<j<n
Example 9
0 0 0)

Let4A = (O 0 0
A is a zero matrix.

Definition 8  Square Matrix
Let A = (aij) be a matrix.

A is a square matrix if it has an equal number of rows and columns. In other words, if a
matrix has dimensions n X n, where n is a positive integer, then it is called a square
matrix.



a11 a12 aln
;1 0dyp . QAon
A . . 2 .

An1 QApz2 -« Aun

The elements a4, ays, ..., Ay, are called the elements of the main diagonal.

Example 10

1 2 3
letA=(4 5 6
7 8 9

A is a square matrix because it has the same number of rows and columns.
Remark 4

If A is a square matrix we can say: A is of size n X n or of order n.

Definition 9  Identity Matrix

Let A = (a;;) be a square matrix of size n X n.

An identity matrix, often denoted by I or I, , is a square matrix with 1s on the main
diagonal and Os elsewhere.

10 .. 0
(o 1 -
I'={: . . o
0 .. 0 1

lsii=i
Mathematically: V1 <i<netl<j<mn, a; = {0 S; i ij’
Example 11

1 0 O
letI=1{0 1 0
0 0 1

I is an identity matrix for matrices of order 3.

Definition 10 Diagonal Matrix

Let A = (aij) be a square matrix of size n X n.

We say that A is a diagonal matrix if its elements below and above the main diagonal are

all zeros.
aiq 0 .. 0
[ 0 ap i :
A= : W w0
0 . 0 apn

Mathematically: V1 <i<netl<j<n, i # j = a;; =0
Example 12

1 0 O
letA=(0 2 O
0 0 3

A is a diagonal matrix.

I the identity matrix is also a diagonal matrix.
Example 13



10 .0
et/ =( 9 L -,
0 0 1

The identity matrix is also a diagonal matrix.

Definition 11 Upper Triangular Matrix
Let A = (aij) be a square matrix of size n X n.

We say that 4 is an upper triangular matrix if its elements below the main diagonal are all

zeros.
a1 Az .. Qip
4= 0 az.z a?n
0 0 .. apn

Mathematically: V1 <i<nand1<j<nifi > j = a; =0
Example 14

1 0 5
letA=|0 2 1
0 0 3

A is an upper triangular matrix.

Definition 12 Lower Triangular Matrix
Let A = (aij) be a square matrix of size n X n.

We say that 4 is a lower triangular matrix if its elements above the main diagonal are all

Zeros.
aiq 0 ... 0
ac| P
An1 An2 - Anp

Mathematically: V1 <i<nand1<j<n,ifi<j = a;; =0
Example 15

1 0 O
letA=(3 2 0
0 4 2

A is a lower triangular matrix.

Definition 13 Transpose of a Matrix
Let A = (al-j) be a matrix of size m X n.

The transpose of a matrix 4, denoted by A%, is the matrix obtained from 4 by

interchanging rows and columns. Specifically, if 4 is an m X n matrix, then A¢ is the
n X m matrix.

a a cee a
a11 a12 aln 11 21 ml
a a e a
a Tz a, 12 22 m2
A — 21 : n P At — : 3
m1 Am2 Amn .
Ain  QAn Amn



Example 16
2

1
_ . (1 3 5
LetA_<§ g):A—(z " 6)

-1 8 7 -1 3 0
letB=(3 5 6 |=B‘'=|8 5 2
0 2 —4 7 6 —4

Property 3
Let A and B be two matrices of size m X n, C a matrixof sizen X land a € F.
. (4AHt = A.
2. (aA)t = aAt.
3. (A+B)t=A"+B"
4, (AC)t =CtAt

=

Definition 14  Symmetric Matrix
Let A = (aij) be a square matrix of order n.

A is a symmetric matrix if it is equal to its transpose.
Mathematically: A® = A

Example 17

1 -3 0
letA=(-3 2 5
0 5 3

1 -3 0
A is a symmetric matrix because: At = <—3 2 5) =A
0 5 3

Definition 15 Asymmetric Matrix
Let A = (aij) be a square matrix of order n.

A is asymmetric matrix if At = —A.
Example 18

0 —-i 5
letA=| i 0 3
-5 -3 0

0 i -5
A is an Asymmetric matrix because: At = (—i 0 —3) =-A
5 3 0
Remark 5

An asymmetric matrix is also called: anti-symmetric matrix or skew-symmetric matrix.

+* Trace and Determinant of a Matrix

Definition 16 Trace of a Matrix
Let A = (aij) be a square matrix of order n.

The trace of A, denoted by tr(4), is defined to be the sum of the diagonal entries of A.

Mathematically: tr(4) = Y1, a;; = a1 + Ay + -+ + Ay
Example 19



1 6 1
Let A = <4 -7 3) =>tr(A)=1+(-7)+8=2.
9 5 8

Property 4

Let A and B be two square matrices of order n.

1. tr(A+ B) =tr(A4) + tr(B).

2. tr(ad) = a.tr(A) witha € F.

3. tr(4h) = tr(4).

4. tr(AB) = tr(BA).

Definition 17 Determinant of a Matrix
Let A = (aij) be a square matrix of order n.

The determinant of a square matrix A, denoted as det(A), is a scalar calculated
recursively as follows:

1. Forn=1, det(A) = ay;.
ai1 Q12 a1 Agp
2. Forn = 2, A = (a21 azz) <:>det(A) = |a21 a22| = a11 X a22 - a21 X alz.
3. Forn > 2, det(4) = Y7, (-=1)"" x a;; x det (4;;) with1 < i <n.
Where A;; is a matrix obtained from A by deleting the i"th row and thejth column of A.

Example 20
2> 2.5 0 1 6 1 6 0
A= =2 -5 —4
<S 100 i)ﬁg 100 41; ><|10 4| |9 4|+( )|9 1o|

=2x(0x4—10x1)—5x(6X4—9x1)+(—4)(6x10 -9 x0) = —335

** Inverse of a Matrix

Definition 18 Inverse of a Matrix
Let A = (aij) be a square matrix of order n.

The inverse of a square matrix 4 is a square matrix B suchthat AX B = B X A = [,.
1
det (4)

where C = (—1)"*/M;; with 1 < i,j < n is called the cofactor matrix of A. M;; is the
determinant of the (n — 1) X (n — 1) matrix obtained by removing the i" row and the
jt" column from A.
Remark 6
1. The inverse is defined only for square matrices.
2. det(4) # 0 & A~ exists.
3. I, isinvertible, and its inverse is I,, itself.
Property 5
Let A be an invertible matrix.
1. If Aisinvertible, the inverse is unique.
2. A lisalsoinvertible,and (A™1)"1 =4
Example 21

leta=(; HNear=(( )

x Ct,

The inverse of A is defined by: A7 =



¢ Eigenvalues and Eigenvectors

Definition 19 Eigenvalues & Eigenvectors
Let A = (a;;) be a square matrix of order n.

Ais called an eigenvalue of the matrix A if there exists a non-zero vector X € F™ such
that AX = AX.
The vector X is called the eigenvector of A associated with the eigenvalue A.
Mathematically: 1 is an eigenvalue of A & 3X € (F")": AX = AX.

X isaneigenvector of A & AL EF : AX = AX.

Example 22

Let4 = (g g)

Show that A = 3 is an eigenvalue of A.
We know that A is an eigenvalue of A & 3IX € (F")*: AX = AX.

0§ D) =-3(0)= (0 T == x = (2 suchchanen)

Thus, the solutions are generated by the vector (_11) which is the eigenvector

associated with the eigenvalue 4 = 3.
Example 23

Let4 = (g 3)

Is (g) an eigenvector of A.
We know that X is an eigenvector of A & IL € F: AX = AX.

50(2 g)(g)zz(§)=0={§§:§i=1=11

Thus, (g) is an eigenvector of A and its associated eigenvalueis A = 11.

Property 6
Let A, ,4,, ..., 4, be the eigenvalues associated with a given matrix A
1. L+A4,+ ..+ 4, =tr(4).
2. 4 X A X ..X A, =det (A).

Definition 20 Characteristic Polynomial
Let A = (al-j) be a square matrix of order n.

The polynomial p(1) = det(A — Al) is called the characteristic polynomial of A.
Example 24

(1 2
LetA—(3 4)
10(/1)=det(A—/U)=|1;’1 43/1=(1—A)(4—/1)—6:/12—5/1—2.
Property 7

Let P be the characteristic polynomial of a given matrix A.
The eigenvalues of A are the roots of the characteristic polynomial of A.

Mathematically: A is an eigenvalue of A = p(4) = 0.
Example 25

_(1 2 T

letA = (3 4) andp(1) = A* — 51— 2.

Find all eigenvalues of A.



5+v33 5—/33
orl= .

5+v33 and 1, = 5—\/33.

p(D) =22 —51-2=0=> 1=

Thus, the eigenvalues of A are A; =

Property 8
If A is a square matrix of order n then it has at most n eigenvalues.

** Similar Matrices

Definition 21 Similar Matrices
Let A and B be two square matrices in M,,(F).

We say that matrix B is similar to matrix A4, or that A and B are similar, if there exists an
invertible matrix P € M, (F) suchthatB = P"1 AP.

Example 26
Let A and B be two square matrices in M, (R)

A= ((1) i) and B = (—1958 —213)'

A and B are similar, because there exists an invertible matrix P = (
that B= P"1AP

Property 9
If A and B are similar, then they have the same eigenvalues.

1 0

; 1) € M,(R) such

¢ Special Types of Matrices

Definition 22 Positive-Definite Matrix
Let A = (aij) be a real square matrix of order n.

A is said to be a positive-definite matrix if v!Av > 0 for all non-zero v € R™.
Mathematically: A positive definite < vtAv > 0,Vv € R*\{0}

Example 27

2 -1 0
letA=(-1 2 -1
0O -1 2

A is a positive definite matrix.
Property 10

A is positive definite if and only if all of its eigenvalues are positive.

Definition 23 Positive Semi-Definite Matrix
Let A = (aij) be a real square matrix of order n.

A is said to be a positive semi-definite matrix if v*Av > 0 for all non-zero v € R™.
Mathematically: A positive semi definite < vtAv = 0,Vv € R"\{0}

Example 28

2 1 0
letA=(1 2 1
01 2

A is a positive semi-definite matrix.

Property 11



A is positive semi-definite if and only if all of its eigenvalues are non-negative.

Definition 24 Orthogonal Matrix
Let A = (aij) be a real square matrix of order n.

A is called orthogonal if its inverse is equal to its transpose.
Mathematically: A7 = A* = A4t =1
Example 29

Let A = ((1) (1))

A is an orthogonal matrix because: 4 X At = |

0 1 0
letB=|1 0 O
0 0 1

B is an orthogonal matrix because: B X Bt = |

Definition 25 Involutory Matrix
Let A = (a;;) be a square matrix of order n.

A is called involutory if it is equal to its own inverse.
Mathematically: A7 = A = AA =A% =1
Example 30

Let4 = ((1) (1))

A is an involutory matrix because: A X A =1

1 0 0
letB={0 -1 O
0O 0 -1

B is an orthogonal matrix because: B X B =1

* Link Between Linear Maps and Matrices

Definition 26 Link Between Linear Maps and Matrices
Let E and G be two finite-dimensional vector spaces over the field F with dimensions m
and n, respectively. Let B = (by, ..., b,,) be a basis of E and B’ = (b, ..., b},) be a basis
of G,and let f: E — G be a linear map.

The matrix of the linear map f with respect to the bases B and B’ is the matrix denoted
by Maty z' () = (aij) € My, (F). This matrix is composed of columns that represent
the images of the basis vectors of E under f, expressed in the basis B’ of G.

fb) fbz) - f(B) .. f(bm)

bj aj; Az - Qg A1m

bé a1 Qoo ayj v Aom

b7,1 Ap1 Apz 77 Qnj " Anm
Example 31

Let f be the linear map defined by: f(x,y,z) = (x + y — z,x — 2y + 32).
Let B = (ey, ey, €3) be the standard basis of R®> and B’ = (fj, f>) be the standard basis
of R?.



1. We need to find the images of the elements of B under f.
e1=(1 0 0=f(e)=01 1

e;=(0 1 0)=f(e2)=(01 -2)

e3=(0 0 1)=f(es)=(-1 3)

2. We need to express these images in the basis B’

1 D=f+];

1 -2)=fi—2f

-1 D=H+1f L1

Thus, Matz g () = (1 5 3 )

Example 32
Let f be the linear map defined by: f(x,v,2) = (x +y — z,x — 2y + 32).
letA = (Pp1, P2 P3)=(1 1 0),(1 0 1),(0 1 1))bea basisfor R?and
A = (0,,0,) =((1 0),(1 1)) be a basis for R?.

p1=1 1 0)=f(p)=2 -1)=301-0;
p2=(1 0 1)=f(¢2) =(0 4)=—40; +40,
$p3=(0 1 1D)=f($3)=(0 1)=-01+0;
3 -4 -1
Thus, Matg 3 (f) = (_1 4 1 )
Remark 7
Letf,g : E — F be two linear maps.
Let B be a basis of E and B’ be a basis of F.
1. The matrix Matg z'(f) depends on the choice of bases.
2. Matzgp (f+9) =Matge(f)+ Matgp(g).
3. Matgyg(Af)=AMatzgp(f).
Remark 8
Let f: E > Fandg: F - G be two linear maps and let B be a basis of E, B’ a basis of F,

and B a basis of G.
The matrix of the composition f o g with respect to these bases is given by:

Matgy g (f o g) = Matg 5(g) X Matg g (f)

» Norms and scalar products

** Norms

In linear algebra, there are two main types of norms that are commonly discussed: vector
norms and matrix norms.

Vector Norms

Definition 27 Vector Norms
Let VV be a vector space over the field F of scalars.
A normon Vis afunction ||.||: V — R that satisfies the following properties:
1. |lv][=0=v=0.
2. |lvll=0,vveV.



3. |lav|| = |a|.||v|| foralla e Kand v € V.
4. lu+v| <|lull +llvllVu vev.
Remark 9
A norm in a vector space plays the same role as the absolute value in RR.

Definition 28 p-Norms
Let V be a vector space over the field F of scalars. Letp > 0andv € V.

1 1
The p-norm of v is defined by: [[v|l, = ([v1|P + |v|P + -+ |1, [P)P = (Xiq|vi]P)P

Example 33
1
Forp =1= [vlly = (Jve]" + |vo|* + -+ |vp| )T = XL, |vil

1
Forp =5= |[vlly = ([v1]° + [v2]®* + -+ [va]®)3

Definition 29 1,2 and oo Norms
Let V be a vector space over the field F of scalars.
The following three norms are the most commonly used in practice:

1. 1-Norm (Manhattan Norm or Taxicab Norm)
Ilvlly = Xiqlvil.
This norm sums the absolute values of the components of the vector.

2. 2-Norm (Euclidean Norm)

1
vl = Cizilvil®)z = XL, |vil?
This norm is the square root of the sum of the squares of the components, which
corresponds to the Euclidean distance from the origin.

3. oco-Norm (Maximum Norm or Chebyshev Norm)

IVlles = max|v;].

This norm is the maximum absolute value among the components of the vector.
Example 34

fv=(3 4—3i 1)then]|v|l;=9and]|v|]l,=+v35and|v|]le, =75

Matrix Norms

Definition 30 Matrix Norms
A matrix norm is a function from C™*™ to R that satisfies the following properties:
1. |JAll=0=A4=0.

2. |All=0,VvveV
3. ||dd|| = |al.||vA|| for all @« € K and v € C™".
4. ||A+ B|l < ||All + |IB]|V A, B € C™™,
5. [|1AB]| < ||A|l. |IB]| if it is possible.
Definition 31 p-Norms
Letp > 0and A € C™™.
] o _ _ o laxlp
The p-norm of A is defined by: ||A]|, = sup il ||3rcr|1|3§1”Ax”p .

This norm is a matrix norm known as the subordinate matrix norm (to the given vector
norm).



Definition 32 1,2 and co Norms
Let A be a matrix.
The following three norms are the most commonly used in practice:

1. 1-Norm (Maximum Absolute Column Sum Norm)

lAll; = mjaXZilaijl

This norm is the maximum of the sums of the absolute values of the entries in each
column.

2. 2-Norm
”A”z = Amax(ATA)

3. oco-Norm (Maximum Absolute Row Sum Norm)

Al = ml.aXZjlaijl-

This norm is the maximum of the sums of the absolute values of the entries in each row.
Example 35

fa=%(5 Jg)then 4l = &+ 2 and 14ll, = 2 and l4ll., =

Definition 33 Frobenius Norm
Let A be a matrix.

The Frobenius matrix norm is defined by: ||A||r = /tr(ATA) = /Zi,j|ai,j|2.

This norm is analogous to the 2-norm for vectors but applied to matrices. It is the square
root of the sum of the absolute squares of the matrix elements.

Example 36
IfA = %((3) ;%) then ||Allr = V6

+* Inner Product

Definition 34 Inner Product
Inner product on a vector space V is a function that associates with each pair of vectors x

and y a number, satisfying the following properties:
1. (x|x) =0.
2. (x|x)=0 x=0.
. (x|ay) = a{x|y) Va € F.
4. x|y + z) = (x|y) + (x|2)
- (xly) = (ylx)
Example 37
The following function defines a dot product: (4|B) = tr(A”B).
Remark 10
1. Inner product is also called dot product or scalar product.

2. If Vis a vector space equipped with an inner product (x|y), then ||x|| = /(x|x) is a
norm on the space I/.
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