Numerical Methods Practical Warks
$2^{\text {nd }}$ year of a bachelor's degree in computer science

Practical Wark "02"

V. Loups.

V.I While

A while loop executes a block of instructions as long as a logical expression is true.

Syntax

```
while «expression>
    < Instructions >
end
```


Example

In the script editor window, type:

Commands
$\begin{aligned} & a=\square ; \\ & \text { while (a<3) } \\ & \quad \text { fprint ('The value of a: \%d } \% \text { n', a); } \\ & \quad a=a+1 \text {; } \\ & \text { end } \\ & \hline \end{aligned}$
Results
The value of a: 0 The value of a : The value of a: 2

V. 2 for

A for loop is used to repeat a block of instructions a given number of times.
Syntax

for index $=$ value
<nnstructions>
end

Value has one of the following forms:

Form	Description
initVal :endVal	Increments the index variable from initVal to endVal by I.
initVal $:$ step : endVal	Index increments by step value in each iteration, or decrements when step value is negative.
Values from a a vector	The index variable takes the values af a given vector.

Example

In the script editor window, type:

Commands
```fora=10:15 fprint('The value of a: %d\n', a); end```
Results
The value of a: 10
The value of a: 11
The value of a: 12
The value of a: 13
The value of a: 14
The value of a: 15

## Example

In the script editor window, type:

Commands
for a $=10: 2: 15$   fprinf( ('The value of a: \%d $/ n$ ', a);   end
Results
The value of a: 10   The value of a: 12   The value of a: 14

## Example

In the script editor window, type:

Commands	
for $a=\left[\begin{array}{lll}1015 & 20\end{array}\right.$   disp (a)	
end	

## V. 3 Lopss cantral

## V.3.I The break instruction

The break instruction ends the execution of a far or while loap then transfers the execution to the instruction immediately following the loap.

## Example

In the script editor window, type:

Commands
```for i=1:10 if mod(i,2)==1 disp(i) else break disp(i+j) % j is the imaginary unit \sqrt{}{-1} end end```
end Results
1

V.3.I The instruction continue

The continue instruction is used to pass control to the next iteration of for ar while i.e., continue skips the rest of the code in its body and immediately tests the condition before repeating.

Example

In the script editor window, type:

Commands
```for i=1:1[] if mad(i,2)== 1 disp(i) else continues disp(i+j) % j is the imaginary unit \sqrt{}{-1}}\mathrm{ . end end```
Results
3   5   7

## VI. Vectars.

In the command window, type the expressions

Cammands	Results


$\gg \mathrm{A}=[123510]$	$A=123510$
$\gg \mathrm{B}=[10,12,-5]$	$B=1012-5$
> $>$ [ $=[5 ; 0 ; 1]$	$\begin{array}{r} C=5 \\ 0 \\ 1 \end{array}$
$\gg \mathrm{D}=[10:-2: 1]$	D=108542
$\begin{aligned} & \gg E=[11: 12 ; 30 ; 41 ; 15] ; \\ & \gg E(3) \end{aligned}$	years $=30$
$\begin{aligned} & \gg F=\left[\begin{array}{ll} 1 & 3 \end{array}\right] ; \\ & \gg F(:) \end{aligned}$	years $=123$
$\begin{aligned} & \gg=[12345678] ; \\ & \gg \text { sub } G=G(3: G) \end{aligned}$	sub_¢ $=3456$

## VI.I Vector creation

MATLAB lets you create two types of vectars: row vectors and column vectors.

## VI.I.I Line vectar

To create line vectors, simply apen a bracket, write the elements of the vector using a space or comma to separate them, then clase the bracket as follows: $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]$ वг $\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}\right]$.

## VII.I. Column vectar

Column vectors are created in the same way as row vectors but using a semicolon to separate the elements as follows:
$\left[x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right]$.

## VI. 2 Elements access

You can refer to one ar mare elements of a vector in different ways, where the $i^{i^{\prime} e m e}$ component of a vector $v$ is called $v(i)$.

1. To access a single element, simply write vector_name(element_index).

Cammands	Results		
$\gg$ vect $=[103107 \mathrm{Q}\\| \\| 3-10] ;$			
$\gg$ vect $(5)$	ans $=\\| \\| 3$		

2. To access a finite set of vector elements, simply write vector_name (firstElement|ndex : lastElementIndex).

Example

Cammands	Results
$\gg$ vect $=[10: 50] ;$	
$\gg$ vect $(20: 25)$	ans $=293031323334$

3. To access all the elements of a vector, simply write vector_name (:)

Example

Commands		Results
$\gg$ vect $=[1: 0.2: 2] ;$		
$\gg$ vect (:)	ans $=1$	1.2

## VI. 3 Elements madification

Vector elements can be modified by assigning new values to them.

Example

Commands	Results
$\gg v=[12345] ;$	
$\gg v(5)=v(3)-v(2) ;$	
$\gg$ disp $(v)$	$v=12341$

MATLAB also has a table editor that lets you modify the dimensions and entries of a vector ar matrix. To use this editar, double-click on the variable to be edited in the Workspace.

## VI. 4 Vector aperations.

VI.4.I Addition and subtraction.

You can add or subtract two vectars. Both vectars must be of the same type and have the same number of elements.

## Example

In the script editar window, type:

Commands
$A=[7, I I, I 5,23, ~ I] ;$
$B=[2,5, I 3, I B, 20] ;$
$C=A+B$
$D=A-B$

VI.4.2 Multiplication by a scalar.

Multiplying a vector by a number praduces a new vector of the same type, with each element of the original vector multiplied by the chosen number.

## Example

In the command window, type:

Cammands	Results
$\gg$ vect $=[12$ 34 ID 8];	
$\gg$ newVect $=5^{*}$ vect	newVect $=$ 60 17050 40

## VI.4.3 Transposed vector.

The transposition operation changes a column vector into a row vector and vice versa. The transposition operation is represented by $\left.{ }^{( }\right)$.

## Example

In the command window, type:

Commands	Results
$\gg$ vect $=[1234$ ID 8$]$	vect $=1234108$
$\gg$ transVect $=$ vect'	transVect $=12$
	34
	10
	8

## VI.4.4 The scalar praduct (lnner product).

 In MATLAB, you can calculate the scalar product of two vectors using the dot command.
## Example

In the command window, type:

Commands	Results
$\gg$ vect $=[5673] ;$	
$\gg$ vect2 $=[1234] ;$	
$\gg$ vect3 $=$ dat (vectl, vect2)	vect3 $=74$

Both vectars must have the same number of elements. In mathematics, the inner product of $A=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ and $A=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{n}\end{array}\right]$ is:

$$
\text { A. } B=\sum_{i=1}^{n} x_{i} \times y_{i}
$$

## VI.4. 5 Vectars' concatenation.

MATLAB lets you add vectors tagether to create new vectors.

1) The concatenation of two line vectors In the command window, type:

Commands	Results
$\gg$ vect $=[1082] ;$	
$\gg$ vect2 $=[0035] ;$	
$\gg$ vect3 $=[$ vect 1 vect2] $]$	vect3 $=10820035$
$\gg$ vect4 $=[$ vectl; vect2 $]$	vect4 $=1082$
	0035

To perform the secand concatenation, bath vectors must have the same number of elements.
2) The concatenation of two column vectars In the command window, type:

Commands	Results
$\gg$ vect $=[0 ; 1 ; 2] ;$	
$\gg$ vect $2=[3 ; 5] ;$	
$\gg$ vect $3=[$ vectl; vect2 $]$	vect3 $=0$
	1
	2
	3
	5
$\gg$ vect $4=[I[; 20] ;$	
$\gg$ vect $5=[$ vect2 vect4 $]$	vect $4=310$
	520

To perform the second concatenation, both vectors must have the same number of elements.

## VI.4.B Dther Dperations.

Прегаtion	Description
.*	Multiply two vectors component by component.
./	Divide the components of two vectors in pairs.
$\wedge$	Raise the components of one vector to the power of the components of the second vector.
sum(u)	Sum of the components of a vector.
mean(u)	Average of the components of a vector.
length(u)	Gives the length of a vector.
$\min (u)$	Gives the smallest component of a vector.
$\max (u)$	Gives the largest component of a vector.

## VII. Matrices.

## VII.I Creating a matrix.

In MATLAB, you can create a matrix by entering elements in each row and using semicolons to mark the end of each row.

## Example

In the command window, type:

Commands	Results
$\begin{aligned} & \text { >>MI = [12345;2345 } \\ & \text { 6;34567:45678] } \end{aligned}$	$\begin{aligned} & M I= 12345 \\ & 23456 \\ & 34567 \\ & 45678 \end{aligned}$
$\gg M 2=[1,2,3,4,5 ; 2,3$, 4, 5, 6: 3, 4, 5, 6, 7: 4, 5, 6, 7.8]	$\begin{aligned} & M 2= 12345 \\ & 23456 \\ & 34567 \\ & 45678 \end{aligned}$

VII. 2 Elements access.

1. To access an element in the $i^{i^{\prime} e m e}$ row and $i^{i}{ }^{\prime}$ eme column, we write matrix_name (row_index, column_index)

## Example

Commands	Results
>> M (2, 3)	ans $=2$

2. To access all elements of a column matrix_name (: , column_index)

Example

Commands	Results
$\gg M=[153: 492: 108] ;$	
$>M(: 3)$	ans $=3$
	2
	9

3. To access all the elements of a line matrix_name (line_index, :)

Example

Commands	Results
$\gg M=[153: 492: 108] ;$	
$\gg(1,:)$	ans $=153$

4. You can access all the elements of several lines by matrix_name (indexFirstLine : lastLinelndex, :)

Example

Commands	Results
$\gg M=[153: 492: 108] ;$	
$>M(2: 3,:)$	ans $=492$
	109

5. You can access all the elements of several columns by matrix_name (: firstaolumnindex : last[alumnlndex)

Example

Commands	Results
$\gg \mathrm{M}=[153 ; 4$ 2 2110 l ];	
>> M (:, 2: -1:1)	$\begin{array}{r} \text { ans }=51 \\ 94 \\ 01 \end{array}$

6. You can access a sub-matrix matrix_name (firstRowlndex : lastRowIndex, firstLolumnlndex : last[olumnlindex)

Example

Commands	Results
>> $\mathrm{M}(2: 3,2: 1-1: 1)$	$\begin{array}{r} \text { ans }=94 \\ 01 \end{array}$

## VII. 3 Elements Madification.

You can modify the elements of a matrix by selecting the elements to be modified and assigning them new values

## Example

Cammands	Results
$\gg M=[1234 ; 5678] ;$	
$>M(1: 2,2: 3)=[12 ; 33]$	ans $=1124$
	5538

MATLAB also has a table editor that lets you modify the dimensions and entries of a vectar ar matrix. To use this editar, double-click on the variable to be edited in the Workspace.
VII. 4 Deleting raws ar columns.

You can delete a row or column from a matrix by assigning an empty set of brackets [] to that row or column. [] denotes an empty matrix.

## Example

In the command window, type

Commands	Results
$\gg M=[12345 ; 2345$	
$6 ; 34567 ; 45678] ;$	
$\gg M(4,:)=[]$	$M=12345$
	23456
	34567
$>L=M ;$	
$>L(:, 2)=[]$	2435
	356
	3567

## VII. 5 Dperation on matrices.

## VII.5.I Addition and subtraction.

You can add or subtract two matrices.
Both matrices must have the same number of rows and columns.

## Example

In the command window, type

Commands	Results
$\gg A=[123 ; 456 ; 789] ;$	
$>B=[987 ; 654 ; 321] ;$	
$\gg=A+B$	$C=1010$
	101010
	101010
$>D=A-B$	$0=-8-B-4$
	-202
	468

## VII.5. 2 Scalar operations.

When you add, subtract, multiply or divide a matrix by a number, this is called a scalar operation.
Scalar operations produce a new matrix with the same number of rows and columns, with each element of the original matrix added, subtracted, multiplied by or divided by the number.

## Example

In the command window, type

Commands	Results
$\gg \mathrm{M}=[101224 ; 148 \mathrm{~B} ; 288 \mathrm{ID}] ;$	
$\gg \mathrm{s}=2 ;$	
$\gg \mathrm{A}=\mathrm{M}+\mathrm{s}$	$\mathrm{A}=121426$
	16108
	301012
$>\mathrm{S}=\mathrm{M}-\mathrm{s}$	$\mathrm{S}=81022$
	1264
	2668
$\gg \mathrm{P}=\mathrm{M}^{*} \mathrm{~s}$	$\mathrm{P}=202448$
	281612
	561620
$>\mathrm{D}=\mathrm{M} / \mathrm{s}$	$\mathrm{D}=5612$
	743
	1445

## VII.5. 3 Matrix division.

You can divide two matrices using left ( $\backslash$ ) or right (/) division operators. Both matrices must have the same number of rows and columns.

## Example

In the script editor, type



Note
I. $A / B$ is the solution to the equation $x B=A$.
2. $A \backslash B$ is the solution to the equation $A x=B$.

## VII. 5.4 Transposed matrix.

The transposition operation switches rows and columns in a matrix. It is represented by a single quatient (').

## Example

In the command window, type

Commands	Results
$\gg \mathrm{A}=[101223 ; 148 \mathrm{~B} ; 278 \mathrm{~B}]$	$\mathrm{A}=121223$
	1486
	2789
$>\mathrm{B}=\mathrm{A}^{\prime}$	$\mathrm{B}=101427$
	1288
	2369

## VII. 5.5 Concatenation of matrices.

MATLAB lets you concatenate matrices in two ways:

## l) Harizontal concatenation

In the script editor, type

$A=101223123145$
148680-9
278945211

2) Vertical concatenation

In the script editar, type

Commands
Results
$B=101223$
1485
2789
123145
80-8
45211

## VII.5.6 Multiplication of matrices.

In the command windaw, type

Commands	Results
$\gg \mathrm{M}=[123 ; 234 ; 125] ;$	
$>\mathrm{N}=[213 ; 50-2 ; 23-1] ;$	
$\gg \mathrm{P}=\mathrm{M}^{*} \mathrm{~N}$	$\mathrm{P}=1810-4$
	$2714-4$
	$2216-6$

## VII.5. 7 Determinant.

The determinant of a matrix is calculated using MATLAB's det function.

## Example

In the command window, type

Commands	Results
$\gg=[123 ; 234 ; 125] ;$	
$\gg \operatorname{det}(A)$	ans $=-2$

VII. 5.8 Inverse of a matrix.

The inverse of a matrix is calculated using MATLAB's inv function.

Example
In the command windaw, type

Commands	Results
$\gg \mathrm{A}=[123 ; 234 ; 125] ;$	
$\gg$ inv(A)	ans $=-3.520 .5$


	$3-1-1$
	-0.500 .5

## VII. B Special matrices

In the command window, type

Commands	Results
>> zeros (3)	$\begin{array}{r} \hline \text { ans }=000 \\ 000 \\ 000 \end{array}$
>> zeros (3,2)	$\begin{array}{r} \hline \text { ans }=00 \\ 00 \\ 00 \\ \hline \end{array}$
>> ones (4,3)	$\begin{array}{rr} \hline \text { ans }= & 111 \\ 111 \\ 111 \\ 111 \\ \hline \end{array}$
>> eye (4)	$\begin{array}{r} \text { ans }=1000 \\ 0100 \\ 0.10 \\ 0001 \end{array}$
>> eye ( 3,4 )	$\begin{array}{r} \text { ans }=1000 \\ 0100 \\ 0010 \\ \hline \end{array}$

## Remarks

Contral	Description
zeros ()	The zeras () function creates a null   matrix.
ones ()	The anes () function creates a   matrix of I's.
eye ()	The eye () function creates an   identity matrix.

## VIII. Functians.

A function is a group of instructions that together perform a task (similar to scripts but scripts don't have parameters or inputs.). In MATLAB, functions are defined in separate files. The name of the file and the function must be the same.

## Syntax

function [out, out2, ..., out ${ }_{n}$ ] = myfun (in, in2, ..., in ) instructions
end

Here, the name of the function is myfun, inı to inn are the inputs or the parameters and outito outn are the outputs ar the results of the execution of the function.

## Example

In the script editar window, type this code and
save it as mymax

```
function max \(=\) mymax (nl, n2, n3, n4, n5)
 \(\max =\mathrm{nl}\);
 if (n2 > max)
 \(\max =n 2 ;\)
 end
 if (\(\mathrm{n} 3>\max\))
 \(\max =n 3 ;\)
 end
 if (n4 > max)
 \(\max =n 4 ;\)
 end
 if (\(\mathrm{n} 5>\max\))
 \(\max =n 5 ;\)
 end
end
```

In the command window, type

Cammands	Results
$\gg$ mymax $(5,7,19,0,23)$	ans $=23$

## Note

Function files aгe program files with .m extension.

