

University of Batna 2

Faculty of Mathematics and computer science

Department of computer science

Numerical Methods Practical Works
Oussama HARKATI

2nd year of a bachelor's degree in computer science

2023-2024

Practical Work “02”

V. Loops.
V.1 While
A while loop executes a block of instructions as

long as a logical expression is true.

Syntax
while <expression>

 < Instructions >
end

Example
In the script editor window, type:

Commands

a = 0;

while (a < 3)
fprintf ('The value of a: %d\n', a);

a = a + 1;

end

Results

The value of a: 0

The value of a: 1
The value of a: 2

V.2 for
A for loop is used to repeat a block of

instructions a given number of times.

Syntax
for index = value

 <Instructions>
end

Value has one of the following forms:
Form Description

initVal :endVal Increments the index variable from
initVal to endVal by 1.

initVal : step :
endVal

Index increments by step value in

each iteration, or decrements
when step value is negative.

Values from a
vector

The index variable takes the values
of a given vector.

Example
In the script editor window, type:

Commands

for a = 10 : 15

fprintf ('The value of a: %d\n', a);

end

Results

The value of a: 10
The value of a: 11
The value of a: 12
The value of a: 13

The value of a: 14
The value of a: 15

Example
In the script editor window, type:

Commands

for a = 10 : 2 : 15

fprintf ('The value of a: %d\n', a);

end

Results

The value of a: 10
The value of a: 12
The value of a: 14

Example
In the script editor window, type:

Commands

for a = [10 15 2 0]

disp (a)
end

Results

10
15
2
0

V.3 Loops control
V.3.1 The break instruction
 The break instruction ends the execution

of a for or while loop then transfers the

execution to the instruction immediately

following the loop.

Example
In the script editor window, type:

Commands

for i=1:10

if mod(i,2) == 1

 disp(i)

else
 break

 disp(i+j) % j is the imaginary unit √−1.

end

end

Results

1

V.3.1 The instruction continue
 The continue instruction is used to pass

control to the next iteration of for or while i.e.,

continue skips the rest of the code in its body

and immediately tests the condition before

repeating.

Example
In the script editor window, type:

Commands

for i=1:10

if mod(i,2) == 1

 disp(i)
else
 continues

 disp(i+j) % j is the imaginary unit √−1.

end
end

Results

1
3

5
7
9

VI. Vectors.
In the command window, type the expressions

Commands Results

>> A = [1 2 3 5 10] A = 1 2 3 5 10

>> B = [10, 12, -5] B = 10 12 -5

>> C = [5; 0; 1] C = 5

 0
 1

>> D = [10∶ -2 : 1] D = 10 8 6 4 2

>> E = [11; 12; 30; 41; 15];

>> E (3)

years = 30

>> F = [1 2 3];
>> F(:)

years = 1 2 3

>> G = [1 2 3 4 5 6 7 8];
>> sub_G = G(3:6)

sub_G = 3 4 5 6

VI.1 Vector creation
MATLAB lets you create two types of vectors:

row vectors and column vectors.

VI.1.1 Line vector
 To create line vectors, simply open a

bracket, write the elements of the vector using

a space or comma to separate them, then close

the bracket as follows: [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] or
[𝑥1 𝑥2 𝑥3 … 𝑥𝑛].

VI.1.1 Column vector
 Column vectors are created in the same

way as row vectors but using a semicolon to

separate the elements as follows:
[𝑥1; 𝑥2; 𝑥3; … ; 𝑥𝑛].

VI.2 Elements access
 You can refer to one or more elements

of a vector in different ways, where the 𝑖𝑖′𝑒𝑚𝑒

component of a vector 𝑣 is called 𝑣(𝑖).

1. To access a single element, simply write

vector_name(element_index).

Commands Results
>> vect = [10 3 107 9 113 -10];

>> vect (5) ans = 113

2. To access a finite set of vector elements,

simply write vector_name

(firstElementIndex : lastElementIndex).

Example
Commands Results

>> vect = [10: 50];

>> vect (20:25) ans = 29 30 31 32 33 34

3. To access all the elements of a vector,

simply write vector_name (:)

Example

Commands Results
>> vect = [1: 0.2: 2];

>> vect (:) ans = 1 1.2 1.4 1.6 1.8 2

VI.3 Elements modification
 Vector elements can be modified by

assigning new values to them.

Example
Commands Results

>> v = [1 2 3 4 5];

>> v (5) = v (3)−v (2);

>> disp (v) v = 1 2 3 4 1

MATLAB also has a table editor that lets

you modify the dimensions and entries of a

vector or matrix. To use this editor, double-click

on the variable to be edited in the Workspace.

VI.4 Vector operations.
VI.4.1 Addition and subtraction.

You can add or subtract two vectors.

Both vectors must be of the same type and have

the same number of elements.

Example
In the script editor window, type:

Commands

A = [7, 11, 15, 23, 9];

B = [2, 5, 13, 16, 20];

C = A + B

D = A − B

Results

C = 9 16 28 39 29

D = 5 6 2 7 -11

VI.4.2 Multiplication by a scalar.
Multiplying a vector by a number produces a

new vector of the same type, with each element

of the original vector multiplied by the chosen

number.

Example
In the command window, type:

Commands Results
>> vect = [12 34 10 8];

>> newVect = 5 * vect newVect = 60 170 50 40

VI.4.3 Transposed vector.
The transposition operation changes a

column vector into a row vector and vice versa.

The transposition operation is represented by

(′).

Example
In the command window, type:

Commands Results
>> vect = [12 34 10 8] vect = 12 34 10 8

>> transVect = vect’ transVect = 12

 34
 10
 8

VI.4.4 The scalar product (Inner product).
 In MATLAB, you can calculate the scalar

product of two vectors using the dot command.

Example
In the command window, type:

Commands Results
>> vec1 = [5 6 7 9];

>> vect2 = [1 2 3 4];

>> vect3 = dot (vect1, vect2) vect3 = 74

Both vectors must have the same number of

elements. In mathematics, the inner product of

𝐴 = [𝑥1 𝑥2 … 𝑥𝑛] and 𝐴 = [𝑦1 𝑦2 … 𝑦𝑛] is:

𝐴. 𝐵 = ∑ 𝑥𝑖 × 𝑦𝑖

𝑛

𝑖=1

VI.4.5 Vectors’ concatenation.
 MATLAB lets you add vectors together to

create new vectors.

1) The concatenation of two line vectors

In the command window, type:

Commands Results
>> vec1 = [1 0 8 2];

>> vect2 = [0 0 3 5];

>> vect3 = [vect1 vect2] vect3 = 1 0 8 2 0 0 3 5

>> vect4 = [vect1; vect2] vect4 = 1 0 8 2
 0 0 3 5

To perform the second concatenation, both

vectors must have the same number of

elements.

2) The concatenation of two column vectors

In the command window, type:

Commands Results
>> vec1 = [0; 1; 2];

>> vect2 = [3; 5];

>> vect3 = [vect1; vect2] vect3 = 0
 1
2
3

5

>> vect4 = [10; 20];

>> vect5 = [vect2 vect4] vect4 = 3 10
 5 20

To perform the second concatenation, both

vectors must have the same number of

elements.

VI.4.6 Other Operations.
Operation Description

.∗ Multiply two vectors component by
component.

./ Divide the components of two
vectors in pairs.

. ^ Raise the components of one
vector to the power of the

components of the second vector.

𝑠𝑢𝑚(𝑢) Sum of the components of a
vector.

𝑚𝑒𝑎𝑛(𝑢) Average of the components of a
vector.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑢) Gives the length of a vector.
𝑚𝑖𝑛(𝑢) Gives the smallest component of a

vector.
𝑚𝑎𝑥(𝑢) Gives the largest component of a

vector.

VII. Matrices.
VII.1 Creating a matrix.

In MATLAB, you can create a matrix by

entering elements in each row and using

semicolons to mark the end of each row.

Example
In the command window, type:

Commands Results

>> M1 = [1 2 3 4 5; 2 3 4 5

6; 3 4 5 6 7; 4 5 6 7 8]

M1 = 1 2 3 4 5

 2 3 4 5 6
 3 4 5 6 7
 4 5 6 7 8

>> M2 = [1, 2, 3, 4, 5; 2, 3,

4, 5, 6; 3, 4, 5, 6, 7; 4, 5, 6,
7, 8]

M2 = 1 2 3 4 5

 2 3 4 5 6
 3 4 5 6 7
 4 5 6 7 8

VII.2 Elements access.
1. To access an element in the 𝑖𝑖′𝑒𝑚𝑒 row

and 𝑗𝑖′𝑒𝑚𝑒 column, we write

matrix_name (row_index, column_index)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (2, 3) ans = 2

2. To access all elements of a column

matrix_name (: , column_index)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (:, 3) ans = 3
 2

 9

3. To access all the elements of a line

matrix_name (line_index, :)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (1, :) ans = 1 5 3

4. You can access all the elements of

several lines by matrix_name

(indexFirstLine : lastLineIndex, :)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (2: 3, :) ans = 4 9 2
 1 0 9

5. You can access all the elements of

several columns by matrix_name (:
firstcolumnindex : lastColumnIndex)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (:, 2: -1:1) ans = 5 1
 9 4
 0 1

6. You can access a sub-matrix

matrix_name (firstRowIndex :
lastRowIndex, firstColumnIndex :
lastColumnIndex)

Example
Commands Results

>> M = [1 5 3;4 9 2;1 0 9];

>> M (2: 3, 2: -1:1) ans = 9 4
 0 1

VII.3 Elements Modification.
You can modify the elements of a matrix

by selecting the elements to be modified and

assigning them new values

Example
Commands Results

>> M = [1 2 3 4; 5 6 7 8];

>> M (1: 2, 2: 3) = [1 2; 5 3] ans = 1 1 2 4
 5 5 3 8

MATLAB also has a table editor that lets

you modify the dimensions and entries of a

vector or matrix. To use this editor, double-click

on the variable to be edited in the Workspace.

VII.4 Deleting rows or columns.
 You can delete a row or column from a

matrix by assigning an empty set of brackets []

to that row or column. [] denotes an empty

matrix.

Example
In the command window, type

Commands Results
>> M = [1 2 3 4 5; 2 3 4 5

6; 3 4 5 6 7; 4 5 6 7 8];

>> M (4 , :) = [] M = 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

>> L = M;

>> L (: , 2) = [] L = 1 3 4 5

 2 4 5 6
 3 5 6 7

VII.5 Operation on matrices.
VII.5.1 Addition and subtraction.

You can add or subtract two matrices.

Both matrices must have the same number of

rows and columns.

Example
In the command window, type

Commands Results
>> A = [1 2 3; 4 5 6; 7 8 9];

>> B = [9 8 7; 6 5 4; 3 2 1];

>> C = A + B C = 10 10 10

 10 10 10
 10 10 10

>> D = A - B D = -8 -6 -4
 -2 0 2
 4 6 8

VII.5.2 Scalar operations.
 When you add, subtract, multiply or

divide a matrix by a number, this is called a

scalar operation.

Scalar operations produce a new matrix with

the same number of rows and columns, with

each element of the original matrix added,

subtracted, multiplied by or divided by the

number.

Example
In the command window, type

Commands Results
>> M = [10 12 24; 14 8 6; 28 8 10];

>> s = 2;

>> A = M + s A = 12 14 26
 16 10 8

 30 10 12

>> S = M - s S = 8 10 22
 12 6 4
 26 6 8

>> P = M * s P = 20 24 48

 28 16 12
 56 16 20

>> D = M / s D = 5 6 12
 7 4 3
 14 4 5

VII.5.3 Matrix division.
 You can divide two matrices using left (\) or

right (/) division operators. Both matrices must have
the same number of rows and columns.

Example
In the script editor, type

Commands
M1 = [1 0 2; 0 1 9; 3 0 1]
M2 = [0 0 3; 4 5 0; 1 8 9]
RD = M1 / M2
LD = M1 \ M2

Results

RD = 1.2222 0.2963 -0.1852

 2.5556 -0.0370 0.1481
 2.0000 0.8889 -0.5556
LD = 0.4000 3.2000 3.0000

 5.8000 19.4000 -0.0000
 -0.2000 -1.6000 0.0000

Note
1. 𝐴/𝐵 is the solution to the equation

𝑥𝐵 = 𝐴.

2. 𝐴\𝐵 is the solution to the equation
𝐴𝑥 = 𝐵.

VII.5.4 Transposed matrix.
The transposition operation switches

rows and columns in a matrix. It is represented

by a single quotient (').

Example
In the command window, type

Commands Results
>> A = [10 12 23; 14 8 6; 27 8 9] A = 10 12 23

 14 8 6

 27 8 9

>> B = A’ B = 10 14 27
 12 8 8

 23 6 9

VII.5.5 Concatenation of matrices.
 MATLAB lets you concatenate matrices in

two ways:

1) Horizontal concatenation
In the script editor, type

Commands
M1 = [10 12 23; 14 8 6; 27 8 9];
M2 = [12 31 45; 8 0 -9; 45 2 11];

A = [M1, M2]

Results

A = 10 12 23 12 31 45
 14 8 6 8 0 -9
 27 8 9 45 2 11

2) Vertical concatenation
In the script editor, type

Commands
M1 = [10 12 23; 14 8 6; 27 8 9];
M2 = [12 31 45; 8 0 -9; 45 2 11];
B = [M1; M2]

Results

B = 10 12 23
 14 8 6

 27 8 9
 12 31 45
 8 0 -9
 45 2 11

VII.5.6 Multiplication of matrices.
In the command window, type

Commands Results
>> M = [1 2 3; 2 3 4; 1 2 5];

>> N = [2 1 3 ; 5 0 -2; 2 3 -1];

>> P = M * N P = 18 10 -4
 27 14 -4
 22 16 -6

VII.5.7 Determinant.
The determinant of a matrix is calculated

using MATLAB's 𝑑𝑒𝑡 function.

Example
In the command window, type

Commands Results
>> A = [1 2 3; 2 3 4; 1 2 5];

>> det (A) ans = -2

VII.5.8 Inverse of a matrix.
The inverse of a matrix is calculated using

MATLAB's 𝑖𝑛𝑣 function.

Example
In the command window, type

Commands Results
>> A = [1 2 3; 2 3 4; 1 2 5];

>> inv(A) ans = -3.5 2 0.5

 3 -1 -1
 -0.5 0 0.5

VII.6 Special matrices
In the command window, type

Commands Results
>> zeros (3) ans = 0 0 0

 0 0 0
 0 0 0

>> zeros (3,2) ans = 0 0
 0 0
 0 0

>> ones (4,3) ans = 1 1 1

 1 1 1
 1 1 1
 1 1 1

>> eye (4) ans = 1 0 0 0

 0 1 0 0
 0 0 1 0
 0 0 0 1

>> eye (3,4) ans = 1 0 0 0
 0 1 0 0
 0 0 1 0

Remarks

Control Description
zeros () The zeros () function creates a null

matrix.

ones () The ones () function creates a
matrix of 1's.

eye () The eye () function creates an
identity matrix.

VIII. Functions.
A function is a group of instructions that

together perform a task (similar to scripts but

scripts don’t have parameters or inputs.). In

MATLAB, functions are defined in separate files.

The name of the file and the function must be

the same.

Syntax
function [out1, out2, …, outn] = myfun (in1, in2, …, inn)

instructions
end

Here, the name of the function is myfun, in1 to

inn are the inputs or the parameters and out1 to

outn are the outputs or the results of the

execution of the function.

Example
In the script editor window, type this code and

save it as mymax
function max = mymax (n1, n2, n3, n4, n5)

 max = n1;

 if (n2 > max)
 max = n2;

 end
 if (n3 > max)
 max = n3;

 end
 if (n4 > max)
 max = n4;

 end
 if (n5 > max)
 max = n5;

 end
end

In the command window, type

Commands Results
>> mymax (5, 7, 19, 0, 23) ans = 23

Note

Function files are program files with .m

extension.

