Numerical Methods Practical Warks
$2^{\text {nd }}$ year of a bachelor's degree in computer science

Practical Work "03"

MATLAB Exercises

Exercise DI

「reate a vector that goes at equal steps from -2 to +2 containing 50 components.

Exercise 02

1. Using the help command, find what daes the reshape command do?
2. Create the following matrix using one MATLAB line of code and the reshape command.

$$
M=\left(\begin{array}{ccc}
1 & 9 & 17 \\
3 & 11 & 19 \\
5 & 13 & 21 \\
7 & 15 & 23
\end{array}\right)
$$

Exercise 03

Find and display in a vector all integers between I and IOUC which divide by 37. Propose at least two different ways to solve this problem.

Exercise 04

Fibonacci numbers form a sequence starting with \square followed by I. Each subsequent number is the sum of the previous two. Hence the sequence starts as $\mathrm{Z}, \mathrm{I}, \mathrm{I}, 2,3,5,8,13, \ldots$....
Write a non-recursive MATLAB function to calculate the Fibonacci sequence and return the number with a specified index.

Exercise 05

Write a recursive MATLAB function to calculate the Fibonacci sequence and return the number with a specified index.

Exercise [E

Write a MATLAB program (function) to calculate the trace of a square matrix A of order п п \square.
The trace of a matrix is given by: $\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}$.

Exercise 07

Write a MATLAB program to calculate the determinant of a matrix A of order $n>$ D.
The determinant of a matrix is given by: $\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} \times a_{i j} \times \operatorname{det}\left(A_{i j}\right)$.

Exercise 08

Write a MATLAB program that allows you to verify the existence of the inverse of a matrix A then calculate this inverse if it exists.
The inverse of a matrix is given by: $A^{-1}=\frac{1}{\operatorname{det}(A)} \times C^{T}$
With $C=(-1)^{i+j} A_{i j}$ and $A_{i j}$ is the determinant of the matrix of size $(n-1) \times(n-1)$ obtained from A by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A.
Use the previous function to calculate the determinant.

Exercise 79

Write a MATLAB function that calculates the $\|v\|_{1}$ and $\|v\|_{2}$ and $\|v\|_{\infty}$ norms of a given vector v. Where: $\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right| . \quad\|v\|_{2}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right)^{\frac{1}{2}} . \quad\|v\|_{\infty}=\max _{i}\left|v_{i}\right|$

Exercise 10

Write a MATLAB program that calculates the $\|A\|_{1}$ and $\|A\|_{F}$ and $\|A\|_{\infty}$ norms of a given matrix A. Where: $\|A\|_{1}=\max _{j} \sum_{i}\left|a_{i j}\right|$.

$$
\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right| .
$$

$$
\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

Use the trace function from exercise 6 .

Exercise II

Write a MATLAB program to solve a system of linear equations $A x=b$ using Cramer's method. The solution is given by the following formula: $x_{i}=\operatorname{det} A_{i} / \operatorname{det} A$ with A_{i} is a matrix obtained from A by replacing the $i^{\text {th }}$ column of A with the vector b.

Exercise 12

Write a MATLAB program to solve a system of linear equations $A x=b$ using Gauss's elimination. The solution is given by:

$$
\left\{\begin{array}{c}
L_{1}^{(2)} \leftarrow L_{1}^{(1)} \\
\text { At first step }\left\{\begin{array}{c}
\\
L_{i}^{(2)} \leftarrow L_{i}^{(1)}-\alpha_{i 1} L_{1}^{(1)} \text { où } \alpha_{i 1}=\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}}
\end{array}\right. \\
\text { At } k^{\text {th }} \text { step }\left\{\begin{array}{c}
L_{i}^{(k+1)} \leftarrow L_{i}^{(k)}, 1 \leq i \leq k . \\
L_{i}^{(k+1)} \leftarrow L_{i}^{(k)}-\alpha_{i k} L_{k}^{(k)} \text { où } \alpha_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, k+1 \leq i \leq n .
\end{array}\right.
\end{array}\right.
$$

Exercise I3

Write a MATLAB program to solve a system of linear equations $A x=b$ using LU factorization.
The solution is given by:

$$
\left\{\begin{array}{c}
l_{i i}=1,1 \leq i \leq n ; \\
\text { first step }\left\{\begin{array}{l}
u_{1 j}=a_{1 j}, 1 \leq j \leq n ; \\
l_{i 1}=\frac{a_{i 1}}{a_{11}}, 2 \leq i \leq n ;
\end{array}\right. \\
k^{\text {th }} \operatorname{step}\left\{\begin{array}{c}
u_{m j}=a_{m j}-\sum_{k=1}^{m-1} l_{m k} \cdot u_{k j}, m \leq j \leq n \text { and } 2 \leq m \leq n \\
l_{i m}=\frac{\left(a_{i m}-\sum_{k=1}^{m-1} l_{i k} \cdot u_{k m}\right)}{u_{m m}}, m+1 \leq i \leq n \text { and } 2 \leq m \leq n
\end{array}\right.
\end{array}\right.
$$

