ok ‘_)_j"-h Master: Distributed Information Systems Engineering and Security
l L Teacher: Mrs. LOUDINI Souad
J Subject: Blockchain for finance and banks

o, *
7y o
sy oF BE

TpN2
Solutions
- the different data types in Solidity
1) Variables

Booleans

bool : The possible values are constants true and false .

Integers

int / uwint : Signed and unsigned integers of various sizes. Keywords uints to uint2s6 in steps of
& (unsigned of 8 up to 256 bits) and int8 to int256 . wint and int are aliases for uint256 and
int256 , respectively.

Address
The address type comes in two largely identical flavors:

» address : Holds a 20 byte value (size of an Ethereum address).

» address payable : Same as address , but with the additional members +transfer and send .

String Literals and Types

String literals are written with either double or single-quotes (“foo* or -var*), and they can also be
split into multiple consecutive parts (“foo “bar~ is equivalent to ~foobar~) which can be helpful
when dealing with long strings. They do not imply trailing zeroes as in C; o0~ represents three

bytes, not four. As with integer literals, their type can vary, but they are implicitly convertible to
bytesl , ..., bytes32 , if they fit, to bytes and to string .

% There is three different types of variables:

Local Variables State Variables Global Variables
e declared inside the e declared outside the e are special variables
function function that exist in the global
e not saved in to the e stored on the namespace and provide
blockchain blockchain information about the
blockchain.

2) Structs
- Astruct is a user-defined composite
data type that allows you to group
together a collection of variables with
different data types under a single Person {
name. name,
age;

9.8.17;

- Enum: An enum, short for
enumeration, is a user-defined data
type that represents a set of distinct
values. State {

Enumerations are useful when onGoing,

you have a fixed set of options or Completed,

states for a variable. Cancelled

3) Functions

e Functions are the fundamental building blocks of smart contracts. They are
reusable pieces of code that perform specific tasks or actions when called.
Functions encapsulate logic and behavior,

e Functions can be defined inside and outside of contracts.

e Visibility Modifiers control who can access and execute functions. There are
four types of visibility modifiers:

Public External Internal Private
Public functions External Internal functions | Private functions
are accessible functions can can only be are the most
from anywhere, only be called called from restrictive. They
both inside and | from outside the within the can only be
outside the contract. They contract. They [called from
contract. cannot be called are not within the same
internally accessible from [function where
outside. they are defined.

e State Mutability indicates whether a function modifies the contract's state or
not. There are three types of state mutability:

o View: View functions read data from the contract's state but do not
modify it. They are useful for retrieving information without affecting the
contract's state.

o Pure: Pure functions not only read data from the contract's state but
also guarantee that they will not modify it under any circumstances.
They are considered the most secure type of function.

o Payable: Payable functions can receive Ether payments when called.

They are typically used for transactions or value transfers.
- Parameters and Return Values allow functions to take input data and provide
output data. Parameters are the values that are passed to a function when it
is called. Return values are the values that the function generates and sends

back to the caller.

Function {

returnMany()
1,

4) Constructors

- constructor is a special function that is 0.8.17;
executed only once when a contract is Coin {
name;
deployed. symbol;
- ltis used to initialize the contract's state
variables. constructor(
_name,
- A contract can have only one _symbol
constructor.) o
name = _name;
symbol = symbol;
5) Mappin

- amapping is a data structure similar to a HashMap in C++ and Java or
a dictionary (Dict) in Python

- Mapping is a (key, value) data structure, where keys and values can
have different types.

0.8.17;
Mapping {

myMap;

_addr)

myMap[_addr];

_addr,

myMap[_addr] = i;

remove(_addr)

myMap[addr];

6) Events
Events in Solidity serve as a way to log important information on the Ethereum
blockchain. They are defined within a smart contract using the event keyword at the
contract level. These events are particularly valuable for the front-end or user
interface of decentralized applications, as they allow applications to listen to changes
in the contract.

@& 7 Home % tp.sol X

~0.8.20;
Event {

indexed sender,

AnotherLog();

test() .
Log .sender,
Log . sender,
AnotherLog();

7) Modifiers
Function behavior can be changed using function modifiers. Function modifier can
be used to automatically check the condition prior to executing the function. These
can be created for many different use cases. Function modifier can be executed
before or after the function executes its code.

- The modifiers can be used when there is a need to verify the condition
automatically before executing a particular function.
- If the given condition is not satisfied, then the function will not get executed.

~0.8.20;

AdminControl {
admin;

constructor() {
admin = .sender;

onlyAdmin() {
.sender == admin, "Only the admin can cz

setAdmin(newAdmin) onlyAadmin {
admin = newAdmin;

pertormAdminTask() onlyAdmin {

8) Gas

Gas is a unit of computational effort on blockchain networks, representing the cost of
executing operations within smart contracts.

How much ether do you need to pay for a transaction?
You pay gas spent * gas price amount of ether, where

* gzas is a unit of computation
= gas spent is the total amount of gas used in a transaction
* gas price is how much ether you are willing to pay per gas

Transactions with higher gas price have higher priority to be included in a block.

Unspent gas will be refunded.

To learn more about Solidity . Visit this website : Here

https://docs.soliditylang.org/en/v0.8.20/

